
1

©"2011"–"2013"PERCONA"

MySQL Basics and Tools

Percona Training
http://www.percona.com/training

1!

1

©"2011"–"2013"PERCONA"

STORAGE ENGINES
InnoDB Basics and Tools

3"

1

©"2011"–"2013"PERCONA"

Storage Engines
•  MySQL Separates SQL from Storage.
–  Replication, Partitioning, Stored Procedures all happen

above the storage engine layer.
–  Storage happens in the Storage Engines.

•  The most popular storage engine is InnoDB.
–  The default is InnoDB as of MySQL 5.5.
–  For 99% of people MyISAM is probably the wrong

choice.

4"

1

©"2011"–"2013"PERCONA"

Storage Engines: InnoDB
•  Most popular, default since MySQL 5.5.
•  Row-level locking.
•  ACID transactions.
•  Automatic crash recovery.
•  Caching data and indexes.
•  Referential integrity (foreign keys).
•  Better performance and scalability when tuned well.
•  Fulltext indexing in MySQL 5.6.

5"

1

©"2011"–"2013"PERCONA"

Storage Engines: MyISAM
•  Default storage engine until MySQL 5.1.
•  Table-level locking.
•  Relies on filesystem caching—risk of corruption.
•  Fulltext indexing.
•  GIS indexing.

6"

1

©"2011"–"2013"PERCONA"

Storage Engines: Others
•  MEMORY

–  Stores data in volatile memory.
•  BLACKHOLE

–  Stores no data, like /dev/null. Very fast! Small footprint!
–  Useful as a dummy target, while DML is written to the binlog.

•  CSV
–  Stores data in text files using a comma-separated value format.

•  ARCHIVE
–  Store large amounts of unindexed data with transparent

compression.
–  Supports only INSERT and SELECT.

7"

1

©"2011"–"2013"PERCONA"

Storage Engines: Not Recommended
•  MERGE

–  Interface to a collection of identical MyISAM tables as
one table.

–  Use Partitioning instead.
•  FEDERATED

–  Lets you access data from remote MySQL instances
without using replication or cluster technology.

–  Roughly analogous to Oracle Database Links.
–  Not recommended; stability and performance issues.

8"

1

©"2011"–"2013"PERCONA"

Changing a Table’s Storage Engine

•  Simple to convert:
mysql> ALTER TABLE name ENGINE=InnoDB;

•  It performs a table restructure (just like many
ALTER statements do), and the table is locked for
the duration.

•  Test carefully—you could truncate data or lose table
details if data types or index types are not
supported in the new storage engine.

9"

1

©"2011"–"2013"PERCONA"

The MySQL Server
•  Start & stop MySQL Server with the init script:

$ /etc/init.d/mysql [start|stop|restart|
status]

•  Some Linux distributions also support this style:
$ service mysql [start|stop|restart|status]

•  The init script launches mysqld_safe. This
watchdog script runs the daemon mysqld, and
restarts the daemon if it exits abnormally.

25"

1

©"2011"–"2013"PERCONA"

The MySQL Server (cont.)
•  The mysqld daemon runs many threads for all the

work of listening for client connections, running
queries, logging, doing I/O, etc.

$ pstree -a

init

 ├─mysqld_safe /usr/bin/mysqld_safe --datadir=/var/lib/mysql
--pid-file=/var/run/mysqld/mysqld.pid

 │ └─mysqld --basedir=/usr --datadir=/var/lib/mysql --
plugin-dir=/usr/lib64/mysql/plugin --user=mysql--pid-file=/v

 │ ├─{mysqld}

 │ ├─{mysqld}

 │ ├─{mysqld}

26"

1

©"2011"–"2013"PERCONA"

The MySQL Client
•  The mysql client runs SQL commands interactively,

or executes an SQL script in batch mode.
•  You can enable default client options in

$HOME/.my.cnf:
[client]

host = db1

user = scott

password = tiger

27"

1

©"2011"–"2013"PERCONA"

Client Builtins
•  mysql> pager command

–  Filter output through a shell program. Turn off with
nopager.

•  mysql> tee file
–  Log session to a file. Turn off with notee.

•  mysql> warnings
–  Show any warnings by default. Turn of with
nowarning.

28"

1

©"2011"–"2013"PERCONA"

Client Builtins
•  mysql> edit

–  Edit the current command in $EDITOR.

•  mysql> prompt string
–  Add metacharacters to prompt.

•  mysql> delimiter string
–  Use string as statement terminator instead of default ;
–  Needed for CREATE TRIGGER / PROCEDURE / FUNCTION,

because those statements include unquoted ; characters.

29"

1

©"2011"–"2013"PERCONA"

Client Builtins
•  Vertical format output: \G statement terminator.

30"

1

©"2011"–"2013"PERCONA"

Client Builtins
•  editline for simple command editing.

–  Control-A / E: move cursor to start / end of line.
–  Control-W: erase to start of line.
–  Control-R: search SQL command history.

•  View current editline key bindings:
–  Edit $HOME/.editrc and temporarily add this line:
bind

–  Start mysql client. It outputs all key bindings.

31"

*"readline"was"used"in"MySQL"Community"builds"prior"to"5.6,"except"on"Windows."

1

©"2011"–"2013"PERCONA"

Other MySQL Tools
•  mysqladmin: Run administration commands as

arguments, making it easier to write scripts.
•  mysqldump: Logical database dump tool.
•  mysqlbinlog: Convert binary logs to SQL scripts.
•  mysqlimport: Bulk load flat files to database.

32"

1

©"2011"–"2013"PERCONA"

MySQL GUI Tools
•  MySQL Workbench

–  http://dev.mysql.com/downloads/workbench/
–  Browse database objects.
–  Prototype and test SQL queries.
–  Edit data model diagrams.
–  Administer server instances.

•  MySQL Enterprise Monitor
–  Commercial tool available to subscribers of Oracle Support.
–  Monitoring and alerting for one or many MySQL instances.
–  Advisors for tuning and fixing issues.

33"

1

©"2011"–"2013"PERCONA"

Many Third-Party GUI Tools

34"

dbForge"Studio" hbp://www.devart.com/dbforge/mysql/studio/" Free"to"$99"

HeidiSQL" hbp://www.heidisql.com/" Free"(GPL)"

Navicat" hbp://www.navicat.com/" Free"to"$369"

phpMyAdmin" hbp://www.phpmyadmin.net/" Free"(GPL)"

Sequel"Pro" hbp://www.sequelpro.com/" Free"(GPL)"

SQLYog"/"MonYog" hbp://www.webyog.com/"" $99+"/"$199+"

Toad"for"MySQL" hbp://www.quest.com/toadOforOmysql/" Free"

1

©"2011"–"2013"PERCONA"

Note: Command Line Only
•  Today’s examples assume use of the MySQL

command line.
–  If you prefer to use MySQL Workbench or another GUI

environment, you may do so on your own.

35"

1

©"2011"–"2013"PERCONA"

STORAGE ENGINES
InnoDB Basics and Tools

3"

1

©"2011"–"2013"PERCONA"

Storage Engines
•  MySQL Separates SQL from Storage.
–  Replication, Partitioning, Stored Procedures all happen

above the storage engine layer.
–  Storage happens in the Storage Engines.

•  The most popular storage engine is InnoDB.
–  The default is InnoDB as of MySQL 5.5.
–  For 99% of people MyISAM is probably the wrong

choice.

4"

1

©"2011"–"2013"PERCONA"

Storage Engines: InnoDB
•  Most popular, default since MySQL 5.5.
•  Row-level locking.
•  ACID transactions.
•  Automatic crash recovery.
•  Caching data and indexes.
•  Referential integrity (foreign keys).
•  Better performance and scalability when tuned well.
•  Fulltext indexing in MySQL 5.6.

5"

1

©"2011"–"2013"PERCONA"

Storage Engines: MyISAM
•  Default storage engine until MySQL 5.1.
•  Table-level locking.
•  Relies on filesystem caching—risk of corruption.
•  Fulltext indexing.
•  GIS indexing.

6"

1

©"2011"–"2013"PERCONA"

Storage Engines: Others
•  MEMORY

–  Stores data in volatile memory.
•  BLACKHOLE

–  Stores no data, like /dev/null. Very fast! Small footprint!
–  Useful as a dummy target, while DML is written to the binlog.

•  CSV
–  Stores data in text files using a comma-separated value format.

•  ARCHIVE
–  Store large amounts of unindexed data with transparent

compression.
–  Supports only INSERT and SELECT.

7"

1

©"2011"–"2013"PERCONA"

Storage Engines: Not Recommended
•  MERGE

–  Interface to a collection of identical MyISAM tables as
one table.

–  Use Partitioning instead.
•  FEDERATED

–  Lets you access data from remote MySQL instances
without using replication or cluster technology.

–  Roughly analogous to Oracle Database Links.
–  Not recommended; stability and performance issues.

8"

1

©"2011"–"2013"PERCONA"

Changing a Table’s Storage Engine
•  Simple to convert:

mysql> ALTER TABLE name ENGINE=InnoDB;

•  It performs a table restructure (just like many
ALTER statements do), and the table is locked for
the duration.

•  Test carefully—you could truncate data or lose table
details if data types or index types are not
supported in the new storage engine.

9"

1

©"2011"–"2013"PERCONA"

Replication

Percona Training
http://www.percona.com/training

1!

1

©"2011"–"2013"PERCONA"

Table of Contents
1. Overview 5. Administration and Maintenance

2. Setting Up Replication 6. Problems and Solutions

3. Under the Hood

4. Topologies

2!

1

©"2011"–"2013"PERCONA"

OVERVIEW
Replication

3!

1

©"2011"–"2013"PERCONA"

Replication Overview
•  Replication is a mechanism for recording a series of

changes on one database server and applying the
same changes to a replica.

•  The source the “master” and its replica is a “slave.”

4!

Master! Slave!

1

©"2011"–"2013"PERCONA"

Replication Solutions
High"Availability" If"the"master"server"crashes,"the"slave"serves"a"hot"spare."

Load"Balancing" The"applicaIon"can"send"some"read"queries"to"the"slave,"giving"
you"greater"capacity"for"readLonly"query"load."

Backups" You"can"create"database"backups"on"a"slave,"without"worrying"
about"impacIng"producIon"traffic."

Dedicated"Queries" Reports"or"other"offline"tasks"can"read"data"from"a"slave."

Data"DistribuIon" The"slave"can"be"an"offLsite"replica"that"is"conInually"up"to"date."

TesIng" Experiment"with"queries,"MySQL"tuning,"or"version"upgrades"you"
aren’t"ready"to"use"on"the"master."

5!

1

©"2011"–"2013"PERCONA"

How Replication Works
•  Master records committed changes in its binary log.

6!

Master! Slave!

binary
log!

1

©"2011"–"2013"PERCONA"

How Replication Works
•  The slave’s IO thread continually downloads the

master’s binary logs.
•  These copies on the slave are called relay logs.

7!

Master! Slave!

binary
log!

relay log!

1

©"2011"–"2013"PERCONA"

How Replication Works
•  The slave’s replication SQL thread executes the

changes against its copy of the database.
•  They stay in sync as incremental changes are

applied.

8!

Master! Slave!

binary
log!

relay log!

1

©"2011"–"2013"PERCONA"

How Replication Works
•  Replication is asynchronous by default.
•  The slave can stop executing changes or stop

downloading logs, and resume later where it left off.

9!

Master! Slave!

binary
log!

relay log!

1

©"2011"–"2013"PERCONA"

Semi-Synchronous Replication
•  Commit on master waits for at least one semi-sync

slave to confirm receipt of the binary log.
•  Assures a change is logged in two places—although

slave can still lag behind executing the changes.

10!

Master! Slave!

binary
log!

relay log!

1

©"2011"–"2013"PERCONA"

Clarification on the Binary Log
•  In Oracle and some other RDBMS implementations,

the transaction log is also used for replication.
•  MySQL has two separate change logs.

–  InnoDB transaction log: physical changes to InnoDB
data pages, to ensure durability. Used only during
crash recovery.

–  Binary log: representing logical changes to data. These
logs are used for replication and point-in-time recovery.

11!

1

©"2011"–"2013"PERCONA"

SETTING UP
Replication

12!

1

©"2011"–"2013"PERCONA"

Setting Up Replication
1.  Enable binary logs on the master.
2.  Assign a server id to each server.
3.  Grant a user on the master server.
4.  Initialize the slave with a replica of data.
5.  Configure the slave.
6.  Start replication.

13!

1

©"2011"–"2013"PERCONA"

1. Enabling Binary Logs
•  The log-bin config variable names a filename prefix

for binlog files.
•  MySQL will generate a numeric suffix, with

incrementing values as it allocates new files.
•  Configure in /etc/my.cnf:

[server]

log_bin

•  Enabling/disabling the binary log or changing the
file prefix requires restart of the MySQL instance.

14!

1

©"2011"–"2013"PERCONA"

2. Assigning Server-Id
•  Each MySQL instance in a replication chain must

have a distinct server id.
•  Any distinct positive integer between 1 and 232-1.
•  Server id 0 means the instance cannot be a master

or a slave.
•  Configure in /etc/my.cnf:

[server]

server_id = 1234

•  Changing the server id requires restart of the
MySQL instance.

15!

1

©"2011"–"2013"PERCONA"

3. Creating the Replication User
•  The slave needs to connect to the master to

download binary logs.
•  The user must minimally have REPLICATION

SLAVE privilege.
•  You may also grant REPLICATION CLIENT

privilege so this user can run commands to report
replication status.

mysql> GRANT REPLICATION SLAVE,
REPLICATION CLIENT ON *.* TO
repl@'192.168.0.%' IDENTIFIED BY 'xyzzy';

16!

1

©"2011"–"2013"PERCONA"

4. Initialize Data for the Slave
•  Changes in the binary log are incremental, so the

master and slave should start with a common
baseline of data.

•  The most important thing to do is note the current
binary log file and position when you capture the
initial data.

•  For example, you can include the binary log
coordinates in any backup from the master.
$ mysqldump --master-data=1 …other options…

•  Restore the data dump on the slave.

17!

1

©"2011"–"2013"PERCONA"

Locating Master Binlog Coordinates
•  You can also view the current binlog position on the

master at the time you capture the initial data you
use for the slave:
mysql> SHOW MASTER STATUS\G

 File: mysql-bin.000023
 Position: 107

18!

1

©"2011"–"2013"PERCONA"

5. Configure Replication
•  Run on the slave:

mysql> CHANGE MASTER TO
 MASTER_HOST='masterdb',
 MASTER_USER='repl',
 MASTER_PASSWORD='xyzzy',
 MASTER_LOG_FILE='mysql-bin.000023',
 MASTER_LOG_POS=107;

•  Use the log file and pos you noted on the master
when you created the initial data.

19!

1

©"2011"–"2013"PERCONA"

5. Configure Replication
•  Older versions of MySQL supported options in
/etc/my.cnf to configure the slave, but this is
deprecated.
–  Bad idea anyway, since your server may restart, and

reset the binlog coordinate the slave subscribes to.

20!

1

©"2011"–"2013"PERCONA"

6. Start Replication
•  Run on the slave:

mysql> START SLAVE;

•  To stop the slave:
mysql> STOP SLAVE;

•  You can also independently start and stop
the IO thread (downloading binary logs) and
the SQL thread (executing relay logs):
mysql> START SLAVE IO_THREAD;

mysql> START SLAVE SQL_THREAD;

21!

1

©"2011"–"2013"PERCONA"

Check Replication Status (1)

22!

mysql> SHOW SLAVE STATUS\G

 Master_Host: 192.168.56.110

 Master_User: repl

 Master_Port: 3307

 Master_Server_Id: 2

 Connect_Retry: 60

 Master_Log_File: db2.000019

 Read_Master_Log_Pos: 302

 Relay_Master_Log_File: db2.000019

 Exec_Master_Log_Pos: 302

Continued…

1

©"2011"–"2013"PERCONA"

Check Replication Status (2)

23!

 Slave_IO_State: Waiting for master to send event

 Slave_IO_Running: Yes

 Slave_SQL_Running: Yes

 Seconds_Behind_Master: 0

 Last_Errno: 0

 Last_Error:

 Last_IO_Errno: 0

 Last_IO_Error:

 Last_SQL_Errno: 0

 Last_SQL_Error:

 Skip_Counter: 0

 Continued…

1

©"2011"–"2013"PERCONA"

Check Replication Status (3)

24!

 Relay_Log_File: relay.000007

 Relay_Log_Pos: 4

 Relay_Log_Space: 107

 Until_Condition: None

 Until_Log_File:

 Until_Log_Pos: 0

 Continued…

1

©"2011"–"2013"PERCONA"

Check Replication Status (4)

25!

 Replicate_Do_DB:

 Replicate_Ignore_DB:

 Replicate_Ignore_Server_Ids:

 Replicate_Do_Table:

 Replicate_Ignore_Table:

 Replicate_Wild_Do_Table:

 Replicate_Wild_Ignore_Table:

 Continued…

1

©"2011"–"2013"PERCONA"

Check Replication Status (5)

26!

 Master_SSL_Allowed: No

 Master_SSL_CA_File:

 Master_SSL_CA_Path:

 Master_SSL_Cert:

 Master_SSL_Cipher:

 Master_SSL_Key:

Master_SSL_Verify_Server_Cert: No

http://dev.mysql.com/doc/refman/5.6/en/replication-administration-status.html!

1

©"2011"–"2013"PERCONA"

Exercise: Set Up Replication
1.  Configure replication between two instances.
2.  Start replication and check replication status.
3.  Verify that replication is running, by creating a dummy

table on the master and then look for it on the slave.
mysql> CREATE TABLE test.foo
 (id INT PRIMARY KEY);

4.  Stop replication.
5.  Create another dummy table on the master, look for it

on the slave. It should not be there yet.
6.  Start replication and look for the new table on the slave

again.
27!

1

©"2011"–"2013"PERCONA"

UNDER THE HOOD
Replication

28!

1

©"2011"–"2013"PERCONA"

Replication Under the Hood
•  Binary log formats
•  More on log files
•  Chains of replication
•  Replication filtering

29!

1

©"2011"–"2013"PERCONA"

Binary Log Formats
•  You can set the default binary log format on the master,

in /etc/my.cnf:
[server]

binlog_format = STATEMENT

binlog_format = ROW

binlog_format = MIXED

•  In theory, you can change this dynamically, but some
errors have been reported when attempting this on a
busy server.

•  To be safe, at least stop applications from making
changes before changing binlog_format globally.

30!

1

©"2011"–"2013"PERCONA"

Statement Based Binary logs
•  Binary log can contain SQL statements to be executed.
•  Slave re-parses SQL statements from relay log and

executes against its replica data.
•  Sensitive to discrepancies in data. Applying changes

against wrong data can propagate and worsen the drift.
•  Some statements are by nature non-deterministic, or

have different effects on the master vs. the slave:
UPDATE tablename SET ...
WHERE columnname > SYSDATE();

31!

1

©"2011"–"2013"PERCONA"

Row Based Binary Logs
•  Binary log contains the result of changes executed on the

master. That is, copies of the rows affected by changes.
•  Applying on the slave does not run SQL, it simply

replaces the rows.
•  Pros:

–  Avoids re-executing costly statements, possibly reducing CPU
load on the slave.

–  Protects against slave drift in many cases.
–  Reduces locks necessary to ensure changes are applied in the

correct order.

32!

1

©"2011"–"2013"PERCONA"

Row Based Binary Logs
•  Cons:

–  When a statement applies to many rows, all affected
rows need to be copied into the binary log file.

–  Binary logs contain the row image before and after the
change.

–  MySQL 5.6 mitigates this, storing only columns that
changed.

33!

1

©"2011"–"2013"PERCONA"

Mixed Mode Binary Logs
•  Defaults to STATEMENT format, and typically uses

STATEMENT almost all the time.
•  Switches to ROW format only for statements that

MySQL detects are unsafe for replication.
•  DDL (CREATE/ALTER/DROP) is always logged in

STATEMENT format regardless.

34!

1

©"2011"–"2013"PERCONA"

Auxiliary Replication Files
mysqlLbin.index" MySQL"uses"this"file"to"catalog"its"binary"logs"exist."

mysqlLrelayLbin.index" A"slave"catalogs"its"relay"logs."

master.info" A"slave"stores"its"replicaIon"parameters"(that"you"set"with"
CHANGE"MASTER)."E.g."the"replicaIon"password"in"plain&text."

relayLlog.info" A"slave"uses"this"file"to"record"how"far"it’s"executed"changes."""
•  Percona"Server"tracks"a"slave"in"a"crashLsafe"way:"

h^p://www.percona.com/doc/perconaLserver/5.5/
reliability/innodb_recovery_update_relay_log.html"

•  MySQL"5.6"does"this"too."

35!

1

©"2011"–"2013"PERCONA"

Suppressing Binary Logging
•  You can make changes in a session without logging.

mysql> SET SESSION SQL_LOG_BIN=0;

mysql> ALTER TABLE title
 ADD INDEX (title(50), production_year);

•  Resume logging by setting the variable back to 1,
or else simply end the current session.

•  Common technique to reduce downtime:
–  Apply changes to a slave.
–  Swap the roles of a slave and its master.
–  Apply changes to the former master.

36!

1

©"2011"–"2013"PERCONA"

Chains of Replication
•  A slave can be the master of a downstream slave.

The middle slave must write to its own binary log.
[server]
log_bin = 1
log_slave_updates = 1

37!

Master! Slave!

binary
log!

relay log!

Slave!

binary
log!

relay log!

1

©"2011"–"2013"PERCONA"

Chains and Binlog Format
•  Tip: Intermediate slaves should use
binlog_format=STATEMENT.
–  If master sends STATEMENT binlog records, these stay

in STATEMENT.
–  If master sends ROW binlog records, these stay in ROW.
–  This configuration is important to support table

checksums.

38!

1

©"2011"–"2013"PERCONA"

Replication Filters
•  Replicate partial data, so slaves handle less traffic.
•  http://dev.mysql.com/doc/refman/5.6/en/replication-

rules.html

39!

1

©"2011"–"2013"PERCONA"

Replication Filter on the Master
•  Master writes to its logs for only some databases.
•  Then all slaves apply all changes in the logs.

40!

Server 1!

Server 2! Server 3! Server 4!

Databases: !
•  wordpress!
•  sessions!
•  logs!

wordpress!wordpress!wordpress!

1

©"2011"–"2013"PERCONA"

Replication Filter on the Slave
•  Master writes changes for all databases to its logs.
•  Then each slave downloads all binary logs, but

executes only changes against specific databases.

41!

Server 1!

Server 2! Server 3! Server 4!

Databases: !
•  wordpress!
•  sessions!
•  logs!

logs!sessions!wordpress!

1

©"2011"–"2013"PERCONA"

Replication Filter Risks
•  Multi-database updates don’t work.
•  Table checksums must run database-specific.
•  Slaves cannot be promoted to master, because they

don’t have a complete set of databases.

42!

1

©"2011"–"2013"PERCONA"

TOPOLOGIES
Replication

44!

1

©"2011"–"2013"PERCONA"

Replication Topologies
•  Master-Slave
•  Master-Master
•  Tiered-Slave
•  Tree
•  Master-Master + Tree
•  Dual-Tree
•  Ring

45!

1

©"2011"–"2013"PERCONA"

Master-Slave Topology
•  Architecture suitable for most projects.
•  Use case: slaves for running backups, analytics, or

increasing capacity for read queries.
•  Doesn’t help for failover/failback, or availability

during upgrades.

46!

Master! Slave!

1

©"2011"–"2013"PERCONA"

Master-Multiple Slaves Topology
•  Use case: additional slaves for other dedicated read-

only queries (e.g. reporting), or increasing capacity
for read queries.

47!

Server 1!

Server 2! Server 3! Server 4!

1

©"2011"–"2013"PERCONA"

Master-Master Topology
•  Use CHANGE MASTER on both MySQL instances

to subscribe to changes on the other instance.
•  Safest if your applications write to one instance at a

time; the other instances are set read-only.
•  Use case: failover/failback, availability during

upgrades.

48!

Writer! Reader! Reader! Writer!

1

©"2011"–"2013"PERCONA"

Tiered-Slave Topology
•  Avoid multiple slaves downloading binlogs.
•  Not a burden for the master, but it costs bandwidth,

for example if the slaves are in a remote data center.
•  Use case: isolating sets of slaves. E.g.: slaves are in

a separate data center. Avoids redundant download
of binlogs via the WAN.

49!

Master! Slave! Slave!

1

©"2011"–"2013"PERCONA"

Tree Topology
•  Any slave can be a master for “downstream” slaves.
•  Use case: mix of read scaling and isolating sets of

slaves.

50!

Server 1!

Server 2! Server 3! Server 4!

Server 5! Server 6!

1

©"2011"–"2013"PERCONA"

Master-Master + Tree Topology
•  One master-master pair, with additional slaves.
•  All slaves use a single master to allow the passive

master to be freely for maintenance or upgrades.
•  Use case: mix of read scaling and failover.

51!

Server 1!

Server 3! Server 4! Server 5!

Server 2!

1

©"2011"–"2013"PERCONA"

Dual-Tree Topology
•  One master-master pair, with additional slaves on

each master.
•  Use case: mix of read scaling and failover to an

alternate data center.

52!

Server 1!

Server 3! Server 4! Server 5!

Server 2!

Server 6!

1

©"2011"–"2013"PERCONA"

Ring Topology
•  Possible, but not recommended.
•  Use case: you get increased read capacity, and in

theory any slave can take over as master.
•  But if any instance fails, all downstream instances

stop updating.

53!

Writer! Reader!

Reader! Reader!

1

©"2011"–"2013"PERCONA"

ADMINISTRATION AND
MAINTENANCE

Replication

55!

1

©"2011"–"2013"PERCONA"

Replication Administration and
Maintenance

•  Starting slave automatically (or not)
•  Managing log files
•  Monitoring replication health
•  Measuring slave lag
•  Measuring slave drift
•  Correcting slave drift
•  Changing masters
•  Failover and switchover

56!

1

©"2011"–"2013"PERCONA"

Starting Slave Automatically (or not)
•  Replication slave threads start automatically,

unless you set this in /etc/my.cnf:
[server]

skip_slave_start = 1

•  Pros and cons of doing this?
–  Pro: gives the DBA the opportunity to CHANGE

MASTER on the slave after startup (change the master,
change the binlog coordinates, etc.).

–  Con: requires you to do one more manual step when
restarting a slave.

57!

1

©"2011"–"2013"PERCONA"

Managing Log Files
•  View the current binary logs at any time:

mysql> SHOW BINARY LOGS;

+------------+-----------+

| Log_name | File_size |

+------------+-----------+

| db1.000023 | 144 |

| db1.000024 | 107 |

+------------+-----------+

58!

1

©"2011"–"2013"PERCONA"

Managing Log Files
•  MySQL creates a new binary log file:

–  When the mysqld server restarts.
–  When the log file size exceeds max_binlog_size.
–  When you issue FLUSH LOGS;

59!

1

©"2011"–"2013"PERCONA"

Managing Log Files
•  Manually purge binary logs:

mysql> PURGE BINARY LOGS TO 'db1.000024';

•  Automatically purge binary logs:
–  Percona Server also has an option to purge binary logs

when storage exceeds a threshold, instead of by days.
[server]

expire_logs_days = 7

60!

1

©"2011"–"2013"PERCONA"

Managing Log Files
•  RESET MASTER

–  Purges all binary logs and initializes master file and
position to 1.

•  RESET SLAVE
–  Rewrites the slave configuration with default values.

•  RESET SLAVE ALL
–  Removes slave configuration completely.

61!

1

©"2011"–"2013"PERCONA"

Monitoring Replication Health
•  Check for errors:

mysql> SHOW SLAVE STATUS\G;

. . .

Slave-IO-Running: Yes

Slave-SQL-Running: No

Last-Errno: 1062

Last-Error: Error 'Duplicate entry '15218'
for key 1' on query. Default database: 'db'.
Query: 'INSERT INTO db.table (FIELDS)
VALUES (VALUES)’

. . .

62!

1

©"2011"–"2013"PERCONA"

Measuring Slave Lag
•  One measure of slave lag:

mysql> SHOW SLAVE STATUS\G

. . .

Seconds_behind_master: 174

. . .

•  This is usually accurate, but it’s really reporting the
difference in timestamps between the last executed
change by the SQL thread, and the last downloaded
change by the IO thread.

•  There might be more binary logs on the master that
haven’t been downloaded yet.

63!

1

©"2011"–"2013"PERCONA"

Measuring Slave Lag
•  On the master:

mysql> REPLACE INTO dummy (timestamp) VALUES
(SYSDATE());

•  On the slave:
mysql> SELECT SYSDATE() – dummy.timestamp FROM
dummy;

•  This is how Percona Toolkit’s pt-heartbeat works.
–  Insert a timestamp into a dummy table once per second.

The difference on the slave is always an accurate measure of
the real slave lag (within 1 second).

–  http://www.percona.com/doc/percona-toolkit/pt-heartbeat.html
64!

1

©"2011"–"2013"PERCONA"

Measuring Slave Drift
•  Percona Toolkit’s pt-table-checksum
•  http://www.percona.com/doc/percona-toolkit/pt-

table-checksum.html

65!

1

©"2011"–"2013"PERCONA"

Changing Masters
•  Making a slave subscribe to a different master:

mysql> STOP SLAVE;
mysql> CHANGE MASTER TO
MASTER_HOST='192.168.56.202';

•  The binary log position of the new master is almost
certainly not in sync with old master.

•  Discovering the correct binlog coordinate on the new
master corresponding to the last change executed on the
slave can be tricky.
mysql> CHANGE MASTER TO
 MASTER_LOG_FILE='mysql-bin.000123',
 MASTER_LOG_POS=3289439;

mysql> START SLAVE;

66!

1

©"2011"–"2013"PERCONA"

Failover and Switchover
•  Failover is when the current master fails and one of

the slave is assigned to become the new master in
an automatic, unattended manner.
–  This is even harder than it sounds to automate!

•  Switchover is also assigning another server as a
new master, but in a planned manner.
–  This is much more achievable, if you can stop

application traffic even for a few seconds.

67!

1

©"2011"–"2013"PERCONA"

Exercises
•  Create an error by CREATE TABLE only on the

slave, then create the same table on the master.
What is the error?

•  Issue a long-running update on the master and let it
propagate to the slave. How is the lag reported?

•  Run pt-table-checksum. Change some data on the
slave, and run pt-table-checksum again.

68!

1

©"2011"–"2013"PERCONA"

PROBLEMS AND SOLUTIONS
REPLICATION

69!

1

©"2011"–"2013"PERCONA"

Replication Problems and Solutions
•  Slave lag
•  Slave drift
•  Data corruption
•  Non-deterministic

changes
•  Out of band changes
•  Bad server ids
•  Non-replicated data

•  Risks of dual-masters
•  Logs out of sync
•  Oversized packets
•  Limited bandwidth
•  Disk space exhaustion
•  Lost events

70!

1

©"2011"–"2013"PERCONA"

Slave Lag
•  Occasional slave lag is a fact of life, but sometimes it can

get out of control.
•  Mitigation of slave lag:

–  Faster CPU to execute SQL statements more quickly.
–  Faster I/O system to write changes more quickly.
–  Use binlog_format=ROW if the SQL statements are slow to

execute.
–  Replicate fewer changes to slaves (replication filtering).
–  Balance writes over multiple master-slave pairs (sharding).
–  Pre-warm buffer pool on the slave so updates run faster.

71!

1

©"2011"–"2013"PERCONA"

Slave Drift
•  Percona Toolkit’s pt-table-sync
•  http://www.percona.com/doc/percona-toolkit/pt-

table-sync.html

72!

1

©"2011"–"2013"PERCONA"

Data Corruption
•  If the slave drift is too severe, it’s often a quicker

and simpler operation to reinitialize the slave:
–  STOP SLAVE;
–  Drop all the databases (once we’ve decided they’re too

far gone to be useful anyway).
–  Acquire a fresh backup from the master, or from

another slave.
–  Restore the backup to reinitialize the damaged slave.
–  CHANGE MASTER to the right binlog coordinate.
–  START SLAVE;

73!

1

©"2011"–"2013"PERCONA"

Non-Deterministic Changes
•  SQL statements may change data differently on the

slave than on the master.
•  Examples:

UPDATE … ORDER BY RAND() LIMIT 1;

INSERT INTO table (pk) VALUES (UUID());

UPDATE … WHERE ts > SYSDATE();

74!

1

©"2011"–"2013"PERCONA"

Out of Band Changes
•  Some misbehaving applications (or misbehaving

users) may change data directly on the slave.
•  Mitigation strategy:

–  Enable the read_only option for all instances except
the primary master.

mysql> SET GLOBAL read_only=1;

–  The root user and the replication SQL thread can still
make changes.

75!

1

©"2011"–"2013"PERCONA"

Bad Server Ids
•  Misconfiguration of server_id can prevent

replication from running:
mysql> START SLAVE;

ERROR 1200 (HY000): The server is not
configured as slave; fix in config file or
with CHANGE MASTER TO

•  Mitigation strategy: As the error suggests, set
server_id and restart the instance.

76!

1

©"2011"–"2013"PERCONA"

Non-Replicated Data
•  Some changes depend on data that doesn’t exist on

the slave.
–  Temporary tables.
–  Replication-filtered tables.

•  Mitigation strategies:
–  Avoid using temp tables as a source for hybrid read/

write operations (e.g. INSERT…SELECT, multi-table
UPDATE/DELETE, etc.).

–  Use ROW-based replication.

77!

1

©"2011"–"2013"PERCONA"

Risks of Dual Masters
•  Since replication is asynchronous, your applications

may change data on two masters simultaneously,
introducing a consistency violation that isn’t caught
until the changes propagate.
–  E.g., duplicate key violations.

78!

1

©"2011"–"2013"PERCONA"

Risks of Dual Masters
•  Mitigation strategies:

–  Write to one master at a time. Make the other read_only.
–  Let applications write changes to both masters, but be careful

to write only to one instance or the other for a given subset.
–  Configure each instance so that one allocates odd values, and

the other one allocates even values. E.g. in /etc/my.cnf:
[server]

auto_increment_increment=2

auto_increment_offset=N

79!

1

©"2011"–"2013"PERCONA"

Logs Out of Sync
•  Errors in downloading binary logs can stop

replication and report an error:
Last_IO_Error: Got fatal error 1236 from
master when reading data from binary log:
'Could not find first log file name in binary
log index file'

•  For example, the slave was stopped for a long time,
and when it resumed, the binary log file it had been
reading had been purged on the master.

80!

1

©"2011"–"2013"PERCONA"

Oversized Packets
•  Large data payloads (e.g. large BLOB/TEXT data)

can be too large for the default packet size limit.
•  The default is 4MB*; the maximum is 1GB.
•  Mitigation strategy: increase this configuration

setting in /etc/my.cnf on both master and slave:
[server]

max_allowed_packet = 100M

•  MySQL 5.1.64, 5.5.26, 5.6.6 introduces new variable
slave_max_allowed_packet, default value 1GB.

81!

* default max_allowed_packet is 1MB in MySQL < 5.6!

1

©"2011"–"2013"PERCONA"

Disk Space Exhaustion
•  The master can run out of disk space as binary logs

accumulate, even if the database isn’t large.
•  The slave can run out of disk space by downloading

binary logs.
•  Mitigation strategies:

–  Provision disks liberally, with plenty of space to spare.
Don’t run at 90%+ disk full.

–  Set up tools to alert you when disk space is running out.
–  Use expire_logs_days and PURGE BINARY LOGS to

free disk space as needed.

82!

1

©"2011"–"2013"PERCONA"

Lost Events
•  Any GRANT statement that fails on the master

causes replication to stop:
Last_Errno: 1590

Last_Error: The incident LOST_EVENTS occured
on the master. Message: error writing to the
binary log

•  Skip the GRANT statement on all slaves, and restart
replication.

83!

http://bugs.mysql.com/bug.php?id=68892!

1

©"2011"–"2013"PERCONA"

ENSURING DATA INTEGRITY
WITH PERCONA TOOLKIT

Replication

84!

1

©"2011"–"2013"PERCONA"

Data Drift
•  MySQL slaves may not be perfect replicas.

–  Non-deterministic statements.
–  Out-of-band changes directly on the slave.
–  Slave may lag and fail to keep up.
–  No built-in checking.
–  Are you using a slave for backups or reporting?

1

©"2011"–"2013"PERCONA"

pt-table-checksum
•  Perform an online replication consistency check, or

checksum MySQL tables efficiently.
•  This is the solution to detect data drift.
•  Calculates checksums against �chunks� of rows.
•  The calculation propagates to slaves.

http://www.percona.com/doc/percona-toolkit/pt-table-checksum.html!

1

©"2011"–"2013"PERCONA"

Visualize This
master!

slave!replication!

1

©"2011"–"2013"PERCONA"

Example
$ pt-table-checksum
 TS ERRORS DIFFS ROWS CHUNKS SKIPPED TIME TABLE
12-01T11:00:13 0 0 633135 7 0 3.814 imdb.aka_name
12-01T11:00:15 0 0 290859 1 0 1.682 imdb.aka_title
Checksumming imdb.cast_info: 24% 01:34 remain
Checksumming imdb.cast_info: 48% 01:03 remain
Checksumming imdb.cast_info: 75% 00:28 remain
12-01T11:02:13 0 0 22187768 163 0 118.059 imdb.cast_info
12-01T11:02:25 0 0 2406561 20 0 12.292 imdb.char_name
12-01T11:02:25 0 0 4 1 0 0.123 imdb.comp_cast_type
12-01T11:02:27 0 0 241457 1 0 1.291 imdb.company_name
12-01T11:02:27 0 0 4 1 0 0.033 imdb.company_type
12-01T11:02:27 0 0 97304 1 0 0.492 imdb.complete_cast
12-01T11:02:27 0 0 113 1 0 0.079 imdb.info_type
12-01T11:02:28 0 0 87520 1 0 0.367 imdb.keyword
12-01T11:02:28 0 0 7 1 0 0.027 imdb.kind_type
12-01T11:02:28 0 0 18 1 0 0.030 imdb.link_type
12-01T11:02:37 0 0 1965016 15 0 9.142 imdb.movie_companies
Checksumming imdb.movie_info: 64% 00:16 remain
12-01T11:03:34 0 0 9748370 76 0 57.105 imdb.movie_info
12-01T11:03:38 0 0 934655 8 0 4.026 imdb.movie_info_idx
12-01T11:03:49 0 0 2776445 15 0 10.552 imdb.movie_keyword
12-01T11:03:52 0 0 922518 7 0 3.051 imdb.movie_link
12-01T11:04:07 0 0 2812743 25 0 15.817 imdb.name
12-01T11:04:29 0 0 2271731 22 0 21.495 imdb.person_info
12-01T11:04:29 0 0 12 1 0 0.015 imdb.role_type
12-01T11:04:39 0 0 1543719 17 0 10.189 imdb.title

1

©"2011"–"2013"PERCONA"

Let�s Break It
•  Delete 5% of data on the slave:

mysql> DELETE FROM title
WHERE RAND()*100 < 5;

Query OK, 77712 rows affected (2.09 sec)

1

©"2011"–"2013"PERCONA"

Re-check
$ pt-table-checksum --tables imdb.title

 TS ERRORS DIFFS ROWS CHUNKS SKIPPED TIME TABLE

12-03T05:04:26 0 14 1543719 16 0 10.512 imdb.title

1

©"2011"–"2013"PERCONA"

Check the Slave(s)
mysql> SELECT db, tbl, SUM(this_cnt) AS total_rows, COUNT(*) AS chunks

FROM percona.checksums
WHERE master_cnt <> this_cnt
 OR master_crc <> this_crc
 OR ISNULL(master_crc) <> ISNULL(this_crc)
GROUP BY db, tbl;

+------+-------+------------+--------+

| db | tbl | total_rows | chunks |

+------+-------+------------+--------+

| imdb | title | 1466007 | 14 |

+------+-------+------------+--------+

1

©"2011"–"2013"PERCONA"

pt-table-sync
•  Synchronize MySQL table data efficiently.
•  This is the solution to correct data drift.

http://www.percona.com/doc/percona-toolkit/pt-table-sync.html!
!

1

©"2011"–"2013"PERCONA"

Method 1: Sync Master to Slave(s)
$ pt-table-sync --verbose --execute --replicate percona.checksums huey

Syncing via replication h=192.168.56.112
DELETE REPLACE INSERT UPDATE ALGORITHM START END EXIT DATABASE.TABLE
0 47 0 0 Chunk 05:05:46 05:05:47 2 imdb.title
0 795 0 0 Chunk 05:05:47 05:05:49 2 imdb.title
0 5070 0 0 Chunk 05:05:49 05:06:01 2 imdb.title
0 6361 0 0 Chunk 05:06:01 05:06:16 2 imdb.title
0 6867 0 0 Chunk 05:06:16 05:06:36 2 imdb.title
0 7297 0 0 Chunk 05:06:36 05:06:55 2 imdb.title
0 7504 0 0 Chunk 05:06:55 05:07:13 2 imdb.title
0 7688 0 0 Chunk 05:07:13 05:07:34 2 imdb.title
0 7346 0 0 Chunk 05:07:34 05:07:52 2 imdb.title
0 7065 0 0 Chunk 05:07:52 05:08:10 2 imdb.title
0 6937 0 0 Chunk 05:08:10 05:08:27 2 imdb.title
0 6695 0 0 Chunk 05:08:27 05:08:43 2 imdb.title
0 6765 0 0 Chunk 05:08:43 05:09:00 2 imdb.title
0 1275 0 0 Chunk 05:09:00 05:09:04 2 imdb.title

1

©"2011"–"2013"PERCONA"

Method 2: Sync Slave to Master
$ pt-table-sync --verbose --execute --sync-to-master h=dewey,D=imdb,t=title

Syncing D=imdb,P=5528,h=127.0.0.1,p=...,t=title,u=root

DELETE REPLACE INSERT UPDATE ALGORITHM START END EXIT DATABASE.TABLE

0 23097 0 0 Chunk 16:07:21 16:08:21 2 imdb.title

1

©"2011"–"2013"PERCONA"

Method 3: Sync Two Hosts
•  pt-table-sync won�t let you clobber a slave by syncing

it to some host other than its master.

$ pt-table-sync --verbose
 --execute h=huey d=dewey
 --tables imdb.title

Can’t make changes on h=dewey because it’s a slave. See the documentation
section 'REPLICATION SAFETY' for solutions to this problem. at /usr/bin/pt-
table-sync line 10642.

1

©"2011"–"2013"PERCONA"

Method 3: Sync Two Hosts
•  Now let’s try again, after running RESET SLAVE.

$ pt-table-sync --verbose
--execute h=huey h=dewey
--tables imdb.title

Syncing h=dewey

DELETE REPLACE INSERT UPDATE ALGORITHM START END EXIT DATABASE.TABLE

0 0 30867 0 Chunk 13:33:27 13:35:28 2 imdb.title

1

©"2011"–"2013"PERCONA"

MYSQL PRIVILEGE SYSTEM
Security

13"

1

©"2011"–"2013"PERCONA"

MySQL Passwords
•  In MySQL authentication protocol, passwords are

not sent as plaintext.
–  This is not true for MySQL’s pluggable authentication

like PAM—make sure to use SSL.

14"

1

©"2011"–"2013"PERCONA"

MySQL Passwords
•  MySQL 5.6 passwords may be stored as a SHA-256

hash with salt.
•  MySQL 4.1-5.5 passwords are stored as a double-

SHA1 hash.
•  MySQL 4.0 and earlier passwords were DES-

encrypted.
–  Some sites still have old_passwords=1 even if they

now use a more recent version of MySQL.

15"

1

©"2011"–"2013"PERCONA"

MySQL Passwords
•  Password expiration
•  Password strength
•  Disabling accounts

16"

1

©"2011"–"2013"PERCONA"

Granting Privileges

•  There is no concept of object ownership. You just grant
a series of permissions based on a pattern.

•  No support for SQL roles or user groups.
•  Username and host combined grants access. It’s

possible to have different permissions based on where
you access from.

http://dev.mysql.com/doc/mysql-security-excerpt/5.6/en/privileges-provided.html

17"

1

©"2011"–"2013"PERCONA"

More Examples

•  Column level privileges also exist - but are not
recommended. Full list of privileges:
–  http://dev.mysql.com/doc/refman/5.6/en/grant.html

18"

©"2011"–"2014"PERCONA"

Hardware and Operating
Systems

Percona Training
http://www.percona.com/training

1!

©"2011"–"2014"PERCONA"

Common Questions
•  Virtualization (cloud) or bare metal servers?
•  SSD or not SSD?
•  One big machine, or a few small machines?
•  Debian or Red Hat?
•  Raid 5 or RAID 10?
•  Filesystems?
•  Kernel / OS Settings?

2!

©"2011"–"2014"PERCONA"

Virtualization
•  Not entirely a technical question.
•  Many cloud environments have limited hardware choices,

with the higher power options very expensive:
•  On Amazon EC2, the most memory you can have is 68.4G for

$1752/month or $1144 reserved for 12 months.

3!

©"2011"–"2014"PERCONA"

Virtualization (cont.)
•  There are a range of technical problems best solved via

hardware.
•  If one [large] machine could do the work, it normally* does

not make sense to make changes to software to work with 10
smaller nodes.

•  For many customers �cloud = agility.” This is not true when
unnecessary complexity reduces agility.

4!

* Clarified in a few slides time!

©"2011"–"2014"PERCONA"

Bare Metal Servers
•  Newer Nehalem servers have up to 64 memory slots.
•  That’s 1TB memory using 16GB DIMMs or 256GB using the

cheaper 4GB DIMMs.
•  For IO, there are flash PCI cards which are capable of 10K

+ IOPS.
•  A hard drive might be capable of 100-200 IOPS.

5!

There is no technical restriction
from using flash or 256GB memory
in a virtualized machine. It’s just
not common in cloud hosting.

©"2011"–"2014"PERCONA"

Bare Metal (cont.)
•  Simple can be better.
•  You reliably know your minimum performance.
•  You can reliably tell that a gigabit ethernet link is yours

alone.
•  You can size settings like innodb_io_capacity to use �all

free capacity.� I.e., you don’t care if this results in more IO,
you would rather all available capacity be used.

•  In practice this can make debugging problems much easier,
due to less unknowns.

6!

Many of our customers can not tell if it
was last week’s deployment that
suddenly made the application slow, or
other users on the same system being
more active.

©"2011"–"2014"PERCONA"

One Big Machine or Many Small?
•  Depends on the goal:
•  One large machine is the easiest to deploy and manage.
•  Many small servers can be helpful for the purposes of

isolation (based on either task or customer).
•  Examples of isolation:
•  Create slaves for reporting queries.
•  Create slaves which are used by

Sphinx for fulltext indexing.

7!

If your customers pay $1000 month
each for a SAAS application, they
often have a certain �expectation� of
performance.

©"2011"–"2014"PERCONA"

SSD or Not?
•  There are some very strong SSD options already available.

Many customers are using them in production.
•  Understanding if it is the best choice is workload

dependent. i.e.
•  Reads vs Writes / Memory Fit?
•  Need for better response or throughput?

8!

©"2011"–"2014"PERCONA"

Advantage of SSDs (1)
•  Fast access time means that the cache miss path is far less

expensive. i.e.
•  ~10ms changes to less than 1ms per IO.

•  This means that:
•  Some applications may not need nearly as high cache hit

ratios. A 50ms page load can barely afford any cache misses.
•  Some operational issues become easier, such as a reduced

warm up time post restart.

9!

©"2011"–"2014"PERCONA"

Advantage of SSDs (2)
•  Throughput of SSDs is much cheaper than hard drives,

even if storage costs more.
•  Many can do 10K+ IOPS.

10!

©"2011"–"2014"PERCONA"

Price/Size Ratio

11"

©"2011"–"2014"PERCONA"

Debian or Red Hat (etc)?
•  Tends not to matter much.
•  What matters the most is that the release is supported for

the duration of time the server will be deployed.
•  Fedora, Gentoo, Ubuntu (non LTS) are likely not good choices

for this reason.

12!

©"2011"–"2014"PERCONA"

RAID5 or RAID10? (1)
•  Workload specific—most likely answer is RAID10.
•  If cache fit is large enough, reads can be nearly eliminated,

and writes are more an issue.
•  With RAID5 if you do not write a full stripe, you need to read

before you write to recalculate parity.
•  For sequential writes only, RAID5 may perform better for the

same number of disks.

13!

©"2011"–"2014"PERCONA"

RAID5 or RAID10? (2)
•  Always difficult to answer this question with 100%

confidence.
•  RAID controller vendors provide little transparency into

internal operations.
•  Just because an optimization could theoretically apply, does

not guarantee that it �does apply.”

14!

©"2011"–"2014"PERCONA"

Stripe Size?
•  Similar difficulty to answer reliably.
•  What probably matters most is:
•  What is the vendor default?
•  Are you ever writing across stripe boundaries?

15!

©"2011"–"2014"PERCONA"

Stripe Size (cont.)
•  What is the vendor default?
•  Likely has the most optimizations. Any changes need to be

verified.
•  Are you ever writing across stripe boundaries?
•  InnoDB almost always writes 16K at a time.
•  If you have a 16K stripe, but InnoDB pages are non-aligned

each write will be on two stripes.
•  Aligning can be difficult[1].
•  Some customers choose larger stripe sizes to’’amortize’’ these

boundary-writes.

16!

http://thunk.org/tytso/blog/2009/02/20/aligning-filesystems-to-an-ssds-erase-block-size/

©"2011"–"2014"PERCONA"

Other RAID Controller Tips
•  You want to purchase the battery option.
•  This allows you to configure caches to write-back mode:
•  Performance from the application on fsync is very good.
•  Data durability is still available.
•  Merging can happen on the RAID controller before writing

down to the physical disks.

17!

©"2011"–"2014"PERCONA"

Filesystems
•  Use XFS when using multiple disks.
•  Supports better concurrency.

•  ext3 will serialize a write to an individual file.
•  It can not take advantage of InnoDB multiple write threads

effectively.
•  A fsync operation is also serialized.

18!

©"2011"–"2014"PERCONA"

Kernel and OS Settings
•  Mount filesystems with noatime!
•  Set vm.swappiness = 0 in /etc/sysctl.conf
•  [With RAID] Change the IO schedulers from the default to

either deadline or noop.
•  Check with: cat /sys/block/DEVICE/queue/scheduler!
•  Change this persistently in /etc/grub.conf!

19!

©"2011"–"2014"PERCONA"

Possible Networking Wins
•  It might be worth increasing /proc/sys/net/ipv4/

ip_local_port_range to get more local TCP/IP ports
available if handling a lot of connections.

•  Decreasing the value of /proc/sys/net/ipv4/
tcp_fin_timeout can help you reduce the time it takes to
idle-recycle a connection.
•  Technically it breaks the standard, but should work fine on a

local network.

20"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Query Optimization

Percona Training
http://www.percona.com/training

1!

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Table of Contents

1. Query Planning 5. JOIN Optimization

2. Explaining the EXPLAIN 6. Subquery Optimization

3. Composite Indexes 7. Beyond EXPLAIN

4. Other Indexing Techniques

2!

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

QUERY PLANNING
Query Optimization

3"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

About This Chapter
•  The number one goal is to have faster queries.
•  The process is:
–  We first ask MySQL what its intended execution plan is.
–  If we don't like it, we make a change, and try again...

4"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

It All Starts with EXPLAIN
•  Bookmark this manual page:

http://dev.mysql.com/doc/refman/5.6/en/explain-output.html
•  It is the best source for anyone getting started.

5"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Example Data
•  IMDB database loaded into

InnoDB tables (~5GB).

•  Download it and import it for
yourself using imdbpy2sql.py:
http://imdbpy.sourceforge.net/

6"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

First Example

7"

1.  CREATE TABLE title (
2.  id int NOT NULL AUTO_INCREMENT,
3.  title text NOT NULL,
4.  imdb_index varchar(12) DEFAULT NULL,
5.  kind_id int NOT NULL,
6.  production_year int DEFAULT NULL,
7.  imdb_id int DEFAULT NULL,
8.  phonetic_code varchar(5) DEFAULT NULL,
9.  episode_of_id int DEFAULT NULL,
10.  season_nr int DEFAULT NULL,
11.  episode_nr int DEFAULT NULL,
12.  series_years varchar(49) DEFAULT NULL,
13.  title_crc32 int(10) unsigned DEFAULT NULL,
14.  PRIMARY KEY (id)
15. ) ENGINE=InnoDB DEFAULT CHARSET=utf8;

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Find the Title Bambi

8"

1.  mysql> EXPLAIN SELECT id,title,production_year FROM title
2.  -> WHERE title = 'Bambi' ORDER BY production_year\G
3.  *************************** 1. row ***************************
4.  id: 1
5.  select_type: SIMPLE
6.  table: title
7.  type: ALL
8.  possible_keys: NULL
9.  key: NULL
10.  key_len: NULL
11.  ref: NULL
12.  rows: 1535171
13.  Extra: Using where; Using filesort
14.  1 row in set (0.00 sec)

3.09s"

ALL means
tablescan

In this case a sort is
required because of

the ORDER BY Anticipated
number of rows
to be examined

Additional filtering
may be possible before

passing to sort.

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Aha! Now Add an Index

9"

1.  mysql> ALTER TABLE title ADD INDEX (title);
2.  ERROR 1170 (42000): BLOB/TEXT column 'title'
3.  used in key specification without a key length

4.  mysql> ALTER TABLE title ADD INDEX (title(50));
5.  Query OK, 0 rows affected (8.09 sec)
6.  Records: 0 Duplicates: 0 Warnings: 0

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

We Must Revisit

10"

1.  mysql> EXPLAIN SELECT id,title,production_year FROM title
2.  -> WHERE title = 'Bambi' ORDER by production_year\G
3.  *************************** 1. row ***************************
4.  id: 1
5.  select_type: SIMPLE
6.  table: title
7.  type: ref
8.  possible_keys: title
9.  key: title
10.  key_len: 152
11.  ref: const
12.  rows: 4
13.  Extra: Using where; Using filesort
14.  1 row in set (0.00 sec)

Using = for comparison, but
not primary key lookup.

Size of the index
used (in bytes)

Anticipated number of rows
to be examined dropped

considerably.

Identified title as
a candidate index,

chose to use it.

0.00s"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Other Ways of Accessing

11"

1.  mysql> EXPLAIN SELECT id,title,production_year FROM title
2.  -> WHERE id = 55327\G
3.  *************************** 1. row ***************************
4.  id: 1
5.  select_type: SIMPLE
6.  table: title
7.  type: const
8.  possible_keys: PRIMARY
9.  key: PRIMARY
10.  key_len: 4
11.  ref: const
12.  rows: 1
13.  Extra: NULL
14.  1 row in set (0.00 sec)

At most one
matching row.

In InnoDB the primary key is
often much faster than all other

keys.

0.00s"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

LIKE

12"

1.  mysql> EXPLAIN SELECT id,title,production_year FROM title
2.  -> WHERE title LIKE 'Bamb%'\G
3.  *************************** 1. row ***************************
4.  id: 1
5.  select_type: SIMPLE
6.  table: title
7.  type: range
8.  possible_keys: title
9.  key: title
10.  key_len: 152
11.  ref: NULL
12.  rows: 98
13.  Extra: Using where
14.  1 row in set (0.00 sec)

Ignore the time with
EXPLAIN. Only look at

the time for a query.

Type is range. BETWEEN, IN()
and < > are also ranges.

Number of rows to be examined
has increased - we are not

specific enough.

0.00s"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Why’s That a Range?
•  We're looking for titles between BambA and

BambZ*
•  When we say index in MySQL, we mean trees.
–  That is, B-Tree/B+Tree/T-Tree.
–  Pretend they're all the same (for simplification).
–  There is only radically different indexing methods for

specialized uses: MEMORY Hash, FULLTEXT, spatial
or 3 party engines.

13"

* In reality the range is a little wider

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

What’s That?

E.T.: The
Extra-

Terrestrial
300 Bambi

Casablanca

Titanic
Lord of

the
Rings

Return
of the
Jedi

Star
Wars

Avatar The
Avengers

Kill Bill:
Vol 3

Gone
with the

Wind

Jaws

Men in
Black 3

Pulp
Fiction

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Could This Be a Range?

15"

1.  mysql> EXPLAIN SELECT id,title,production_year FROM title
2.  -> WHERE title LIKE '%ulp Fiction'\G
3.  *************************** 1. row ***************************
4.  id: 1
5.  select_type: SIMPLE
6.  table: title
7.  type: ALL
8.  possible_keys: NULL
9.  key: NULL
10.  key_len: NULL
11.  ref: NULL
12.  rows: 1442263
13.  Extra: Using where
14.  1 row in set (0.00 sec)

3.2s"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

No, We Can’t Traverse

16"

Do we head left or right here?

E.T.: The
Extra-

Terrestrial
300 Bambi

Casablanca

Titanic
Lord of

the
Rings

Return
of the
Jedi

Star
Wars

Avatar The
Avengers

Kill Bill:
Vol 3

Gone
with the

Wind

Jaws

Men in
Black 3

Pulp
Fiction

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

LIKE �Z%�

17"

1.  mysql> EXPLAIN SELECT id,title,production_year FROM title
2.  -> WHERE title LIKE 'Z%'\G
3.  *************************** 1. row ***************************
4.  id: 1
5.  select_type: SIMPLE
6.  table: title
7.  type: range
8.  possible_keys: title
9.  key: title
10.  key_len: 77
11.  ref: NULL
12.  rows: 13718
13.  Extra: Using where
14.  1 row in set (0.00 sec)

0.05s"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

LIKE �T%�

18"

1.  mysql> EXPLAIN SELECT id,title,production_year FROM title
2.  -> WHERE title LIKE 'T%'\G
3.  *************************** 1. row ***************************
4.  id: 1
5.  select_type: SIMPLE
6.  table: title
7.  type: ALL
8.  possible_keys: title
9.  key: NULL
10.  key_len: NULL
11.  ref: NULL
12.  rows: 1442263
13.  Extra: Using where
14.  1 row in set (0.00 sec)

3.13s

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

LIKE 'The %'

19"

1.  mysql> EXPLAIN SELECT id,title,production_year FROM title
2.  -> WHERE title LIKE 'The %'\G
3.  *************************** 1. row ***************************
4.  id: 1
5.  select_type: SIMPLE
6.  table: title
7.  type: ALL
8.  possible_keys: title
9.  key: NULL
10.  key_len: NULL
11.  ref: NULL
12.  rows: 1442263
13.  Extra: Using where
14.  1 row in set (0.00 sec)

3.07s"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

MySQL Is Reasonably Smart
•  It dynamically samples the data to choose which is

the better choice—or in some cases uses static
statistics.*

•  This helps the optimizer choose:
–  Which indexes will be useful.
–  Which indexes should be avoided.
–  Which is the better index when there is more than one.

20"

* To refresh statistics run ANALYZE TABLE table_name;

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Why Avoid Indexes?
•  B-Trees work like humans search a phone book;
–  Use an index if you want just a few rows.
–  Scan cover-to-cover if you want a large percentage.

21"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Why Avoid Indexes (cont.)
•  Benchmark on a different schema (lower is better):

22"

Table scan has a relatively
fixed cost (blue line).

The index has completely
different effectiveness
depending on how much it
can filter.

Hopefully MySQL switches
at the right point (it does it
a bit early in this case).

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

What You Should Take Away
•  Data is absolutely critical.
–  Development environments should contain sample data

exported from production systems.
–  A few thousands of rows is usually enough for the

optimizer to behave like it does in production.

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

What You Should Take Away (cont.)
•  Input values are absolutely critical.
–  Between two seemingly identical queries, execution

plans may be very different.
–  Just like you test application code functions with several

values for input arguments.

24"

http://www.mysqlperformanceblog.com/2009/10/16/how-not-to-find-unused-indexes/

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

EXPLAINING THE EXPLAIN
Query Optimization

25"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

How to Explain The EXPLAIN
•  The tables are read in the order displayed by EXPLAIN
•  The id column is a sequential identifier of SELECT

statements in the query
•  The select_type column indicates type of SELECT

(simple, primary, subquery, union, derived, ...)
•  The type column says which join type will be used
•  The possible_keys column indicates which indexes

MysQL can choose from use to find the rows in this table
•  The key column indicates which index is used

26"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

How to Explain The EXPLAIN (cont)
•  key_len tells the length of the key that was used (important

to find which parts of a composite index are used)

•  ref shows which columns or constants are compared to
the index named in key column to select rows from the
table

•  rows says how many rows have to be examined in order
to execute each step of the query (the product of all rows columns is
the total number of rows that must be examined to solve the query)

•  Extra contains additional information about how MySQL
resolves the query (see
http://dev.mysql.com/doc/refman/5.6/en/explain-output.html#explain-extra-information)

27"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Types in EXPLAIN
•  The following slides show possible values for
EXPLAIN type, ordered (approximately) from the
fastest to the slowest
–  FULLTEXT access type (and its special indexes) are not

covered on this section

28"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

NULL
•  Not really a plan: no data is returned
•  See ‘Extra’ for a reason

mysql> EXPLAIN SELECT * FROM title WHERE 1 = 2\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: NULL
 type: NULL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: NULL
 Extra: Impossible WHERE
1 row in set (0.00 sec)

mysql> EXPLAIN SELECT * from title where id = -1\G
 type: NULL
 Extra: Impossible WHERE noticed after reading const tables

29"

Made internally equivalent to
SELECT NULL WHERE 0;

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

system
•  The table has only one row (=system table)
•  A seldom used special case of the const joint type

mysql> EXPLAIN SELECT id FROM (SELECT * FROM title LIMIT 1) AS one\G
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: <derived2>>
 type: system
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 1
 Extra: NULL
*************************** 2. row ***************************
 id: 2
 select_type: DERIVED
 table: title
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 1396980
 Extra: NULL
2 rows in set (0.00 sec)

30"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

const
•  Used when comparing a literal with a non-prefix

PRIMARY/UNIQUE index
•  The table has at the most one matching row, which

will be read at the start of the query
•  Because there is only one row, the values can be

regarded as constants by the optimizer
•  This is very fast since table is read only once

31"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

const (cont.)

32"

1.  mysql> EXPLAIN SELECT * FROM title WHERE id = 55327\G
2.  *************************** 1. row ***************************
3.  id: 1
4.  select_type: SIMPLE
5.  table: title
6.  type: const
7.  possible_keys: PRIMARY
8.  key: PRIMARY
9.  key_len: 4
10.  ref: const
11.  rows: 1
12.  Extra: NULL
13.  1 row in set (0.00 sec)

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

eq_ref
•  One row will be read from this table for each

combination of rows from the previous tables
•  The best possible join type (after const)
•  Used when the whole index is used for the =

operator with a UNIQUE or PRIMARY KEY

33"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

eq_ref (cont.)

34"

mysql> EXPLAIN SELECT title.title, kind_type.kind FROM kind_type JOIN title
 ON kind_type.id = title.kind_id WHERE title.title = 'Bambi'\G

************** 1. row **************
 id: 1
 select_type: SIMPLE
 table: title
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 1396980
 Extra: Using where

************** 2. row **************
 id: 1
 select_type: SIMPLE
 table: kind_type
 type: eq_ref
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 4
 ref: imdb.title.kind_id
 rows: 1
 Extra: NULL
2 rows in set (0.00 sec)

Can you think of a way of improving
this query?

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

ref
•  Several rows will be read from this table for each

combination of rows from the previous tables
•  Used if the join uses only a left-most prefix of the

index, or if the index is not UNIQUE or PRIMARY
KEY

•  Still not bad, if the index matches only few rows

35"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

ref (cont.)
mysql> EXPLAIN SELECT distinct t1.title FROM title t1 JOIN title t2

 WHERE t1.title = t2.title and t1.id <> t2.id\G

************** 1. row **************

 id: 1

 select_type: SIMPLE

 table: t1

 type: ALL

possible_keys: title

 key: NULL

 key_len: NULL

 ref: NULL

 rows: 1396980

 Extra: Using temporary

************** 2. row **************

 id: 1

 select_type: SIMPLE

 table: t2

 type: ref

possible_keys: title

 key: title

 key_len: 77

 ref: imdb.t1.title

 rows: 1

 Extra: Using index
condition; Using where; Distinct

2 rows in set (0.00 sec)

36"

Can you think of a more efficient
way of doing the same?

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

ref_or_null
•  ref_or_null
–  This join type is like ref, but with the addition that

MySQL does an extra search for rows that contain NULL
values.

–  This join type optimization is used most often in
resolving subqueries.

37"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

ref_or_null (cont.)

38"

1.  mysql> EXPLAIN SELECT * FROM cast_info
2.  WHERE nr_order = 1 or nr_order IS NULL\G
3.  *************************** 1. row ***************************
4.  id: 1
5.  select_type: SIMPLE
6.  table: cast_info
7.  type: ref_or_null
8.  possible_keys: nr_order
9.  key: nr_order
10.  key_len: 5
11.  ref: const
12.  rows: 12193688
13.  Extra: Using index condition
14.  1 row in set (0.00 sec)

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

index_merge
•  Results from more than one index are combined either

by intersection or union.
•  In this case, the key column contains a list of indexes.

1.  mysql> EXPLAIN SELECT * FROM title

2.  WHERE title = 'Dracula' or production_year = 1922\G
3.  *************************** 1. row ***************************

4.  id: 1

5.  select_type: SIMPLE

6.  table: title

7.  type: index_merge

8.  possible_keys: production_year,title
9.  key: title,production_year

10.  key_len: 77,5
11.  ref: NULL
12.  rows: 2895
13.  Extra: Using sort_union(title,production_year); Using where
14.  1 row in set (0.00 sec)

39"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

unique_subquery/index_subquery
•  unique_subquery
–  The result of a subquery is covered by a unique index.
–  The subquery is used within an IN(...) predicate.

•  index_subquery
–  Similar to unique_subquery, only allowing for non-

unique indexes

40"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

unique_subquery/index_subquery
(cont.)

41"

For index_subquery, use a non-
PRIMARY, non-UNIQUE key

mysql> EXPLAIN SELECT * FROM title
 WHERE title = 'Bambi' and kind_id NOT IN
 (SELECT id FROM kind_type WHERE kind like 'tv%')\G

************** 1. row **************
 id: 1
 select_type: PRIMARY
 table: title
 type: ref
possible_keys: title
 key: title
 key_len: 77
 ref: const
 rows: 4
 Extra: Using where

************** 2. row **************
 id: 2
 select_type: DEPENDENT SUBQUERY
 table: kind_type
 type: unique_subquery
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 4
 ref: func
 rows: 1
 Extra: Using where
2 rows in set (0.04 sec)

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

range
•  Only rows that are in a given range will be

retrieved
•  An index will still be used to select the rows
•  The key_len contains the longest key part that is

used
•  The ref column will be NULL for this type

42"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

range (cont.)

43"

1.  mysql> EXPLAIN SELECT * FROM title
2.  WHERE title='Bambi' OR title='Dumbo' OR title='Cinderella'\G
3.  *************************** 1. row ***************************
4.  id: 1
5.  select_type: SIMPLE
6.  table: title
7.  type: range
8.  possible_keys: title
9.  key: title
10.  key_len: 77
11.  ref: NULL
12.  rows: 49
13.  Extra: Using where
14.  1 row in set (0.00 sec)

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

index
•  The whole index tree is scanned
•  Otherwise same as ALL
•  Faster than ALL since the index file is (should be)

smaller than the data file
•  MySQL can use this join type when the query uses

only columns that are part of a single index

44"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

index (cont.)

45"

1.  mysql> EXPLAIN SELECT count(*), production_year,
2.  group_concat(DISTINCT kind_id ORDER BY kind_id) as kind_id
3.  FROM title
4.  GROUP BY production_year ORDER BY production_year\G
5.  *************************** 1. row ***************************
6.  id: 1
7.  select_type: SIMPLE
8.  table: title
9.  type: index
10.  possible_keys: NULL
11.  key: production_year
12.  key_len: 5
13.  ref: NULL
14.  rows: 1396980
15.  Extra: NULL
16.  1 row in set (0.00 sec)

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

ALL
•  A full table scan; the entire table is scanned
•  Not good even for the first (non-const) table
•  Very bad for subsequent tables, since it means a full

table scan for each combination of rows from the
previous tables is performed

•  Solutions: rephrase query, add more indexes

46"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

ALL (cont.)

47"

1.  mysql> EXPLAIN SELECT * from title
2.  WHERE MAKEDATE(production_year, 1) >= now() - INTERVAL 3 YEAR\G
3.  *************************** 1. row ***************************
4.  id: 1
5.  select_type: SIMPLE
6.  table: title
7.  type: ALL
8.  possible_keys: NULL
9.  key: NULL
10.  key_len: NULL
11.  ref: NULL
12.  rows: 1442263
13.  Extra: Using where
14.  1 row in set (0.00 sec)

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

What You Would Like to See
•  Using index

–  Excellent! MySQL can search for the rows directly from the
index tree, without reading the actual table (covering index)

•  Using where
–  Good! If this is missing, you will get all rows from the table

•  Distinct
–  Good! Only one row for each combination from the previous

tables
•  Not exists

–  Good! MySQL is able to do a LEFT JOIN optimization, and
some rows can be left out

48"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

What You Don’t Like to See
•  Using filesort

–  Extra sorting pass needed!
•  Using temporary

–  Temporary table needed!
–  Typically happens with different ORDER BY and GROUP BY

•  Using join buffer
–  Tables are processed in large batches of rows, instead of by

indexed lookups.
•  Range checked for each record (index map: N)
–  Individual records are separately optimized for index retrieval
–  This is not fast, but faster than a join with no index at all.

49"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

COMPOSITE INDEXES
Query Optimization

50"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Exercise: Add Index(es)
to Improve this Query

51"

3.41s

This number of rows is a
guess. It keeps changing
between examples.

*"Note:"indexes"is"the"appropriate"plural"for"an"index"in"a"database.""Use"indices"for"the"stock"market.""Never"use"the"backMformaNon"indice."

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

We’re Spoiled for Choice.

52"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Index on Production_Year

53"

3.53s

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

How about a Smaller Range?

54"

0.92s

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Index on Title

55"

0.02s

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Comparing the Two

56"

mysql> EXPLAIN SELECT * from title WHERE title =
'Pilot' AND production_year BETWEEN 2006 and 2009\G

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Composite Indexes
•  Which is better?
–  INDEX py_t (production_year, title)
–  INDEX t_py (title, production_year)

57"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Index on py_t

58"

0.02s

http://www.mysqlperformanceblog.com/2010/01/09/getting-around-optimizer-limitations-with-an-in-list/

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Index on py_t

59"

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2012 2013 2014

the"“Pilot”"Ntles"are"not"together;"

they"are"spread"over"each"year"
“Pilot”"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Index on t_py

60"

0.00s

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Index on t_py

61"

300 Ava-
tar

Bam-
bi

Casa
blan-

ca
E.T.

Gone
With
the

Wind
Jaws Kill

Bill
Lord
of the
Rings

Men
in

Black
Pilot Pilot Pilot Star

Wars
Ti-

tanic
Zoo-
land-

er

all"“Pilot”"Ntles"are"together,"and"

the"range"of"years"are"together"

2006M2009"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Recommendations
•  Don’t know what order to specify the columns?
–  RULE: Think about how the equality comparisons

narrow down the subset of rows to examine. Define the
index so the leftmost columns filter most effectively.

–  EXCEPTION: If you have a range comparison (!=, <, >,
BETWEEN, LIKE), those columns should go to the right in
the index.

62"

http://www.mysqlperformanceblog.com/2010/01/09/getting-around-optimizer-limitations-with-an-in-list/

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Recommendations (cont.)
•  Columns after the range-comparison column can’t

be used for filtering in MySQL <5.6
–  but may still be useful in the index, as we’ll see

•  We can still push down those extra columns to the
engine (>= 5.6), having a speed up if the condition is
very selective

63"

http://www.mysqlperformanceblog.com/2012/03/12/index-condition-pushdown-in-mysql-5-6-and-
mariadb-5-5-and-its-performance-impact/

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Using index condition (5.6)

64"

1.  mysql> EXPLAIN SELECT * FROM title
2.  WHERE title like 'B%' and
3.  production_year BETWEEN 1945 and 1950\G
4.  *************************** 1. row ***************************
5.  id: 1
6.  select_type: SIMPLE
7.  table: title
8.  type: range
9.  possible_keys: title,production_year,production_year_title
10.  key: production_year_title
11.  key_len: 82
12.  ref: NULL
13.  rows: 23496
14.  Extra: Using index condition; Using where
15.  1 row in set (0.00 sec)

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

OTHER INDEXING
TECHNIQUES

Query Optimization

65"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Indexes Are Multi-Purpose
•  So far indexes have only been used for filtering.
–  This is the most typical case—don’t forget it.

•  There are also other ways MySQL can use indexes:
–  Avoiding having to sort.
–  Preventing temporary tables.
–  Avoiding reading rows from the tables.

66"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

The First Example Again

67"

3.13s

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Index Prevents Sort

68"

0.00s

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Temporary Table

69"

3.10s

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Full Index Scan

70"

ALTER TABLE title ADD
INDEX py (production_year);

0.00s

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Retrieving Only Limited Columns
•  Query:

SELECT person_id
FROM cast_info
WHERE person_role_id = 35721;

•  What’s the difference between indexes
(person_role_id) versus (person_role_id,
person_id)?

71"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Retrieving Only Limited Columns

72"

ALTER TABLE cast_info ADD
INDEX (person_role_id);

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Covering Index Optimization

73"

ALTER TABLE cast_info ADD
INDEX person_role_id_person_id
(person_role_id, person_id);

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Prefix Index
•  The problem with this schema, is there’s just a

couple of outliers with really long names:

74"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Two Ways to Solve This
•  Pick a good length to get a lot of uniqueness:

75"

96% uniqueness, but only 20 chars instead of 300+ Looks
pretty good to me:ALTER TABLE title ADD index (name(20))

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Option 2: Emulate a Hash Index

76"

A good hashing algorithm has good
distribution. How good is this?

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Option 2: Hash Index (cont.)
•  Query needs to be transformed slightly to:

SELECT * FROM title
WHERE title_crc32 = crc32('Bambi')
AND title = 'Bambi';

•  All updates/inserts also need to update the value of
title_crc32 every time title changes.
–  Can be done easily via the application, or you can use a

trigger if your write load low enough.

77"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Pros & Cons of the Two Solutions

78"

•  Pro:
Built in to MySQL/no magic
required.

•  Cons:
Not very effective when the
start of the string is not
very unique.

•  Pro:
Very Good when there is not
much uniqueness until very
far into the string.

•  Cons:
Equality searches only.
Requires ugly magic to work
with collations/ case
sensitivity.

Hash Index: Prefix Index:

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Index Hints
•  Optimizer decision making is all about tradeoffs.
–  MySQL wants to pick the best plan, but it can’t be

exhaustive in deciding if it takes too long.
•  If MySQL doesn’t pick correctly, you can override:
–  USE INDEX
–  FORCE INDEX
–  IGNORE INDEX

•  See: http://dev.mysql.com/doc/refman/5.6/en/index-hints.html

79"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

USE INDEX
•  Tell the optimizer to consider only the named index.

mysql> SELECT * FROM title USE INDEX (py_t)
 WHERE production_year = 2009;

80"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

FORCE INDEX
•  Like USE INDEX, consider only the named index.
•  But also tells the optimizer that a table-scan is very

expensive, so prefer to use the index, instead of
analyzing the breakpoint when a table-scan may be
easier.

mysql> SELECT * FROM title FORCE INDEX (title)
 WHERE title LIKE 'The %';

81"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

IGNORE INDEX
•  Tells the optimizer not to use a specified index.

mysql> SELECT * FROM title IGNORE INDEX (t_p)
 WHERE title LIKE 'The %';

82"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Caveats of Optimizer Hints
•  Even USE INDEX or FORCE INDEX doesn’t make an

index help if it’s totally inapplicable to the query:
mysql> SELECT * FROM title USE INDEX (t_py)

 WHERE production_year = 2009;

•  The optimizer handles most cases well. If your query is
costly, it’s more likely that you have the wrong indexes
than the optimizer is making a mistake.

•  Hard-coding your application to use a specific index
means that after you create the right index, you’ll have
to change your code as well.

83"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Query Tuning Exercise
•  It’s now your turn to optimize these queries before

we continue on:
–  SELECT * FROM name
WHERE name = 'Brosnan, Pierce';

–  SELECT count(*) c, person_id
FROM person_info
GROUP by person_id;

84"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

JOIN OPTIMIZATION
Query Optimization

85"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Join Analysis

86"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

4m2s

The order you see these
tables mentioned is the order
MySQL has decided to join
on.

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

First Index

88"

mysql> ALTER TABLE char_name ADD index name_idx (name(50));
Query OK, 2406561 rows affected (1 min 56.10 sec)
Records: 2406561 Duplicates: 0 Warnings: 0

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

1m48s

The order changed. cast_info
was previously first!

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA" 90"

0.00s

TIP: Using a covering
index means that we
retrieve all data directly
from the index.

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Join Methods
•  You need to design queries and indexes to filter as

fast as possible.
•  MySQL main join method: a nested loop join.
•  Alternative methods:
–  Batched key access (nested loop join optimized to avoid

random disk access) −only in 5.6, limited usage
–  Hash joins −only for equijoins, only in MariaDB

91"

Performance comparison: http://www.mysqlperformanceblog.com/2012/05/31/a-case-for-mariadbs-hash-joins/

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Nested Loop Join Example
•  Find all actors that were active between 1960 and

1970:

92"

id first_name last_name
1 Sean Connery

2 George Lazenby

3 Roger Moore

4 Timothy Dalton

5 Pierce Brosnan

6 Daniel Craig

Actors: Movies:
id name year
1 Dr. No 1962

2 From Russia with Love 1963

3 Goldfinger 1964

4 You only live twice 1967

5 On Her Majesty’s Secret Service 1969

6 Diamonds Are Forever 1971

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Nested Loop Join Example (cont.)
•  Find all actors that were active between 1960 and

1970:

93"

id first_name last_name
1 Sean Connery

2 George Lazenby

3 Roger Moore

4 Timothy Dalton

5 Pierce Brosnan

6 Daniel Craig

Actors: Movies:
id name year
1 Dr. No 1962

2 From Russia with Love 1963

3 Goldfinger 1964

4 You only live twice 1967

5 On Her Majesty’s Secret Service 1969

6 Diamonds Are Forever 1971

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

If That Query Is Common
•  When you can’t filter enough on one table, bring

some of the other filters from the other tables to the
first one:

94"

id first_name last_name start_date finish_date
1 Sean Connery 1962 1971
2 George Lazenby 1969 1969
3 Roger Moore 1973 1985
4 Timothy Dalton 1987 1989
5 Pierce Brosnan 1995 2002
6 Daniel Craig 2006 2011

Actors:

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

STRAIGHT_JOIN
•  Tells the optimizer not to reorder tables; access

tables in exactly the order you gave in the query.
•  Use it like a query modifier like DISTINCT:
mysql> SELECT STRAIGHT_JOIN name.*

 FROM char_name
 INNER JOIN cast_info
 ON name.id = cast_info.person_role_id
 INNER JOIN name
 ON cast_info.person_id = name.id
 WHERE char_name.name = 'James Bond';

95"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Things Are Looking Good!?
•  Please don’t take away that adding indexes is the

only secret to performance.
•  There’s more to consider:
–  Optimizer limitations for subqueries
–  Estimating index prefix length
–  Join methods
–  Optimizer hints
–  Advanced query profiling

96"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

SUBQUERY OPTIMIZATION
Query Optimization

97"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Subquery Analysis

98"

4.84s

Will it fix it if we add an
index on title.kind_id?

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

With Index on kind_id

99"

4.9s

No! It doesn’t.
Why is this?

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Scalar Subquery

100"

0.07s

Change to using
equality, it works!

The optimizer treats
scalar subqueries
differently, but only
checks that the
subquery is scalar if
you use =.

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Solving via Join

101"

0.06s

It’s okay to have multiple
kind’s specified using this
syntax.

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

BEYOND EXPLAIN
Query Optimization

102"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

The Limitations of EXPLAIN
•  EXPLAIN shows MySQL’s intentions; there is no

post-execution analysis.
–  How many rows actually had to be sorted?
–  Was that temporary table created on disk?
–  Did the LIMIT 10 result in a quick match, resulting in

fewer rows scanned?
–  ... we don’t know.

103"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Going PRO++
•  Combine EXPLAIN with other MySQL diagnostics:
–  SHOW SESSION STATUS
–  SHOW PROFILES
–  Slow Query Log Extended Statistics in Percona Server

104"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Why Going PRO Is Important
•  In addition to the limitations on the previous slide,

MySQL occasionally introduces new undocumented
features.
–  When preparing this presentation, we found BUG

#50394!
–  http://bugs.mysql.com/bug.php?id=50394

105"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

mysql-5141> EXPLAIN select STRAIGHT_JOIN count(*) as c, person_id from cast_info
FORCE INDEX(person_id) inner join title on(cast_info.movie_id=title.id) where
title.kind_id = 1 GROUP BY cast_info.person_id ORDER by c DESC LIMIT 1\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: cast_info
 type: index
possible_keys: NULL
 key: person_id
 key_len: 8
 ref: NULL
 rows: 8
 Extra: Using index; Using temporary; Using filesort
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: title
 type: eq_ref
possible_keys: PRIMARY,title_kind_id_exists
 key: PRIMARY
 key_len: 4
 ref: imdb.cast_info.movie_id
 rows: 1
 Extra: Using where
2 rows in set (0.00 sec)

106"106

16m

MySQL says that only 8 rows
were examined in 5.1.41

Find the actor that
starred in the
most movies.

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Double Checking

107"

http://dev.mysql.com/doc/refman/5.1/en/server-status-variables.html

�The number of times the first entry in
an index was read�

�The number of requests to read the
next row in the data file.�

�The number of requests to read the
next row in key order.�

�The number of requests to read a row
based on a key.�

�The number of requests to insert a
row in a table.�

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

SHOW PROFILES

108"

Enable profiling:
mysql> SET profiling = 1;

Run some query(s):
mysql> SELECT STRAIGHT_JOIN COUNT(*) AS c, person_id
FROM cast_info FORCE INDEX(person_id)
INNER JOIN title ON (cast_info.movie_id=title.id)
WHERE title.kind_id = 1
GROUP BY cast_info.person_id
ORDER by c DESC LIMIT 1;

View the report:
mysql> SHOW PROFILES;
| Query_ID | Duration | Query
| 1 | 211.21064300 | SELECT STRAIGHT_JOIN ...

Only"shows"queries"from"

your"current"session."In"seconds"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

SHOW PROFILES (cont.)

109"

This was executed on a machine with
an SSD drive (different timing)

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Verbose Slow Log in Percona Server

110"

SET GLOBAL long_query_time = 0;
SET GLOBAL log_slow_verbosity = 'full'; /* Percona Server */

Time: 100924 13:58:47

User@Host: root[root] @ localhost []

Thread_id: 10 Schema: imdb Last_errno: 0 Killed: 0

Query_time: 399.563977 Lock_time: 0.000110 Rows_sent: 1 Rows_examined: 46313608
Rows_affected: 0 Rows_read: 1
Bytes_sent: 131 Tmp_tables: 1 Tmp_disk_tables: 1 Tmp_table_sizes: 25194923

InnoDB_trx_id: 1403

QC_Hit: No Full_scan: Yes Full_join: No Tmp_table: Yes Tmp_table_on_disk: Yes

Filesort: Yes Filesort_on_disk: Yes Merge_passes: 5

InnoDB_IO_r_ops: 1064749 InnoDB_IO_r_bytes: 17444847616 InnoDB_IO_r_wait:
26.935662

InnoDB_rec_lock_wait: 0.000000 InnoDB_queue_wait: 0.000000
InnoDB_pages_distinct: 65329

SET timestamp=1285336727;

select STRAIGHT_JOIN count(*) as c, person_id FROM cast_info FORCE INDEX(person_id)
INNER JOIN title ON (cast_info.movie_id=title.id) WHERE title.kind_id = 1 GROUP BY
cast_info.person_id ORDER by c DESC LIMIT 1;

This was executed on a machine
with entirely cold caches.

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Query Planning Overhead
•  Some queries might spend too much time on the

query planning and optimization phase
–  There is no query plan cache in MySQL

•  It can be easily identified when EXPLAIN is “slow”
•  Solution:

–  Force the plan with STRAIGHT_JOIN, etc.
–  Reduce optimizer_search_depth variable

111"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Index Merge Optimization
•  Index Merge access type allows the usage of more

than one index per table access
•  Types:

–  union of several conditions
SELECT * FROM title where title = 'Bambi'
or production_year = 1927

–  intersection
SELECT * FROM title where title = 'Bambi'
and production_year = 1927

112"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

The Merge Access Problem
•  In both cases, there is usually faster alternative

query plans:
–  Union: UNION clauses, single index usage, ...
–  Intersection: composite indexes, secondary index

extensions, single index usage, ...
•  MySQL merge algorithm is selected in most cases

even if those other methods were available and
slower
–  MySQL 5.6 fixes this, although not in all cases

113"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Intersection Merge
•  Drop the single-column indexes (if not used for

other queries) and create a composite index with all
columns
–  Even if the condition cannot be applied, a single column

index or Index Condition Pushdown will be probably
faster

•  You can disable the merge intersection with:
SET optimizer_switch =
'index_merge_intersection=OFF'

114"

http://www.mysqlperformanceblog.com/2012/12/14/the-optimization-that-often-isnt-index-merge-intersection/

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Union Merge
•  Union Merge may or may not be faster than other

methods
–  In 5.6, ref or range over composite indexes should have

higher preference
•  The alternative would be converting the clause to a

UNION/UNION ALL
–  UNION is not always better as it has a problem: for

most cases it will create a temporary table on disk

115"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Example Union Merge

116"

SELECT id FROM title WHERE (title ='Pilot'
or episode_nr = 1) and production_year >
1977;

is slower than the equivalent:
SELECT id FROM title WHERE (title ='Pilot'
and production_year > 1977)
UNION
SELECT id FROM title WHERE (episode_nr = 1
and production_year > 1977);

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

More Features & Workarounds
•  �Delayed Join�
–  http://www.mysqlperformanceblog.com/2007/04/06/

using-delayed-join-to-optimize-count-and-limit-queries/
•  The IN() list workaround
–  http://www.mysqlperformanceblog.com/2010/01/09/

getting-around-optimizer-limitations-with-an-in-list/

117"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Additional Exercises
–  SELECT * FROM movie_info

WHERE movie_id IN (SELECT id FROM title WHERE
title = 'Batman Begins');

–  SELECT * from title
WHERE season_nr != 6 and title LIKE 'Best of%';

–  SELECT t.title FROM name n
INNER JOIN cast_info i ON n.id=i.person_id
INNER JOIN title t ON i.movie_id=t.id
INNER JOIN char_name c ON c.id=i.person_role_id
WHERE n.name='Brosnan, Pierce' AND t.kind_id = 1
AND c.name='James Bond';

118"

1

©"2011"–"2014"PERCONA"

Schema Design

Percona Training
http://www.percona.com/training

1"

1

©"2011"–"2014"PERCONA"

Table of Contents

2!

1. Introduction 7. SQL Constraints

2. Database Design 8. Data Warehousing

3. SQL Data Types 9. Schema Design Tools

4. Table Design 10. Miscellaneous

5. Normalization and
Denormalization 11. Extensible Schema Design

6. Index Design

1

©"2011"–"2014"PERCONA"

Why Is Schema Design Important?
•  The schema is your collection of tables, indexes,

constraints and other database objects.
•  The key to good performance:

–  How you store data (the schema).
–  How you retrieve data (the queries).

3"

1

©"2011"–"2014"PERCONA"

What Makes a Good Schema?
•  A well-designed schema stores all the data you need

to store, and disallows invalid data.
•  An “optimized” schema is really designed for the

queries you need to run.
•  If you need better performance, you can often

improve it by making changes to the schema.

4"

1

©"2011"–"2014"PERCONA"

What Changes?
•  SQL Data Types
•  Table Design
•  Normalization and

Denormalization
•  Index Design
•  SQL Constraints
•  Partitioning
•  Data Warehousing

•  Schema Design Tools
•  Extensible Schema

Design
•  Views
•  Triggers
•  Stored Procedures and

Functions

5"

1

©"2011"–"2014"PERCONA"

Understanding Requirements
•  To design a schema, you need to know:

–  What data entities the project needs to store.
Movies, actors, users, ratings…

–  How data entities are related.
Actors star in movies; TV episodes belong to a TV show;
users give ratings to movies…

•  To optimize a schema, you need to know:
–  What queries the project needs to run.
–  Which queries are most important.

6"

1

©"2011"–"2014"PERCONA"

Data Definition Language (DDL)
•  SQL commands to implement the schema:

CREATE TABLE name ( 
"…columns, indexes, constraints…  

);"
ALTER TABLE name  
"…clauses…;"

DROP TABLE name;"
•  A few other non-standard statements are DDL:

RENAME, TRUNCATE, etc."

7"

1

©"2011"–"2014"PERCONA"

Data Manipulation Language (DML)
•  SQL statements that act on data:

–  CALL
–  DELETE
–  INSERT
–  LOAD
–  REPLACE
–  SELECT
–  UPDATE

8"

1

©"2011"–"2014"PERCONA"

What About Other Commands?
•  There are other statements, but they count as

neither DDL nor DML.
–  DESCRIBE
–  EXPLAIN
–  FLUSH
–  GRANT / REVOKE
–  SET
–  SHOW
–  etc.

9"

1

©"2011"–"2014"PERCONA"

DATABASE DESIGN
Schema Design

10"

1

©"2011"–"2014"PERCONA"

•  Database and schema are synonyms in MySQL.
•  A database is a “namespace” for tables.

What Is a Database?

wordpress"
"
"
"
"
"
"

mysql"
"
"
"
"
"
"

imdb"
"
"
"
"
"
"

11"

1

©"2011"–"2014"PERCONA"

Uses of Databases
•  Defining logical groups of tables and other objects.
•  Allowing multiple tables to use the same name.
•  Backing up groups of tables.
•  Assigning privileges

12"

1

©"2011"–"2014"PERCONA"

Special Databases
•  mysql

–  System tables for MySQL users, passwords, privileges,
character sets, stored procedures, logs, etc.

•  information_schema
–  Dynamic views into metadata and other configuration.

•  performance_schema
–  Dynamic views into runtime status.

•  test* (any database name that starts with ‘test…’)
–  Always readable by any user.

13"

1

©"2011"–"2014"PERCONA"

Common Database Elements
•  Tables
•  Indexes
•  Constraints
•  Views
•  Stored Routines & Triggers

14"

1

©"2011"–"2014"PERCONA"

SQL DATA TYPES
Schema Design

15"

1

©"2011"–"2014"PERCONA"

Integer Types
•  MySQL supports four sizes of integer:

–  TINYINT (1 byte) from -128 to 127
–  SMALLINT (2 bytes) from -32768 to 32767
–  INT (4 bytes) from -2147483648 to 2147483647
–  BIGINT (8 bytes) from -9223372036854775808 to

9223372036854775807
•  The UNSIGNED option does not change the size or

the number of distinct values, but allows only
values >= 0.

16"

1

©"2011"–"2014"PERCONA"

Integer Types
Type% Bytes% Min%Value% Max%Value%

TINYINT" 1" E128" 127"

TINYINT"UNSIGNED" 1" 0" 255"

SMALLINT" 2" E32768" 32767"

SMALLINT"UNSIGNED" 2" 0" 65535"

INT" 4" E2147483648"" 2147483647"

INT"UNSIGNED" 4" 0" 4294967295"

BIGINT" 8" E9223372036854775808"" 9223372036854775807"

BIGINT"UNSIGNED" 8" 0" 18446744073709551615"

17"

1

©"2011"–"2014"PERCONA"

Which Integer to Use?
•  Choose the smallest type that supports the range of

values you need to store.
–  INT vs. BIGINT is 4 bytes extra. Thiswhich adds up

once you have millions of rows.
•  Some columns may grow without bound (e.g. auto-

increment primary keys), but others have a natural
maximum value.
–  Number of players on a football team, for instance.

18"

1

©"2011"–"2014"PERCONA"

Does Size Matter?
•  Of course!

–  Storing data more compactly means you can store more
rows in the same space, both on disk and in memory.

–  If more of your data fits in memory, this benefits
performance.

19"

1

©"2011"–"2014"PERCONA"

Integer Display Width
•  Integer types have an optional argument, but this does

not affect the size of the integer, nor the range of values
it accepts—it’s only a hint for the display width:
CREATE TABLE t (i INT(9) ZEROFILL);"
INSERT INTO t VALUES (1234);"
SELECT * FROM t;"
+-----------+"
| i |"
+-----------+"
| 000001234 |"
+-----------+"

20"

1

©"2011"–"2014"PERCONA"

Float and Double
•  FLOAT and DOUBLE are inexact numerics. They

have necessary rounding behavior:
CREATE TABLE t (f FLOAT);"
INSERT INTO t VALUES (3.3333333333);"
SELECT f * 1000000000 FROM t;"
+--------------------+"
| f * 1000000000 |"
+--------------------+"
| 3333333253.8604736 |"
+--------------------+"

hNp://dev.mysql.com/doc/refman/5.6/en/problemsEwithEfloat.html""

21"

1

©"2011"–"2014"PERCONA"

Why Is This a Problem?
•  Don’t use FLOAT or DOUBLE when you don’t want

rounding, or you need to search for a specific value.
SELECT * FROM t WHERE f = 3.3333333333;"
Empty set (0.00 sec)"

22"

1

©"2011"–"2014"PERCONA"

In Other Words…

If I had a dime for every time
I’ve seen someone use FLOAT to store currency,
I’d have $999.997634.
#ieee754jokes

1

©"2011"–"2014"PERCONA"

Why Use Inexact Numbers?
•  Use FLOAT or DOUBLE when you want to represent

very small or very large values for measurements.
For example, in scientific applications.
INSERT INTO t (f) VALUES (3e-12), (3e+12);"
SELECT * FROM t;"
+----------------+"
| f |"
+----------------+"
| 0.000000000003 |"
| 3000000000000 |"
+----------------+"

24"

1

©"2011"–"2014"PERCONA"

Decimal
•  DECIMAL (and its synonym NUMERIC) are exact

scaled numerics—they don’t round values.
•  Use this for currency values.

CREATE TABLE t (d DECIMAL(9,2));"
INSERT INTO t VALUES (3.33);"
SELECT * FROM t;"
+------+"
| d |"
+------+"
| 3.33 |"
+------+"

25"

1

©"2011"–"2014"PERCONA"

Decimal vs. Integer
•  The size arguments of Decimal affect storage and

range, unlike the width argument of Integer types.

DECIMAL(9,2) " " "INT(9)"

Number"of"significant"
digits"stored."

Scale"(number"of"digits"to"
the"right"of"the"decimal)."

Number"of"
digits"displayed."

26"

1

©"2011"–"2014"PERCONA"

Date and Related Types
•  Using date and time datatypes supports indexing—

values in YYYYMMDD format are sorted in
chronological order.
–  DATE (3 bytes) stores only YYMMDD
–  TIME (3 bytes) stores HH:MM:SS
–  DATETIME (8 bytes) stores YYMMDD HH:MM:SS
–  TIMESTAMP (4 bytes) also stores YYMMDD HH:MM:SS,

converts value between system timezone and UTC.
–  YEAR (1 byte) stores only YYYY.

27"

1

©"2011"–"2014"PERCONA"

Choosing a Date or Time Type
•  Use the most compact type that supports the values

you need to store.
•  For instance, if you don’t need to store the time

portion, using DATE makes your data more compact
and makes some queries simpler.
WHERE datetime BETWEEN '2013-10-17 00:00:00'
AND '2013-10-17 23:59:59'

WHERE date = '2013-10-17'

28"

1

©"2011"–"2014"PERCONA"

Default Timestamps
CREATE TABLE Log (

 ts TIMESTAMP
 DEFAULT CURRENT_TIMESTAMP
 ON UPDATE CURRENT_TIMESTAMP

);

In"MySQL"5.6+,"this"works"for"TIME"and"DATETIME"columns"too."

1

©"2011"–"2014"PERCONA"

Searching Dates by Index
•  You can use an index if your search uses the

leftmost portion of the value.
•  Wrong:

SELECT * FROM title WHERE  
MONTH(production_year) = 4;"

•  Right:
SELECT * FROM title WHERE production_year  
BETWEEN '2013-04-01' AND '2013-04-30';"

30"

1

©"2011"–"2014"PERCONA"

Fractional Seconds
•  DATETIME, TIME, and TIMESTAMP also have an

optional precision for fractional seconds.
CREATE TABLE t (d DATETIME(6));"
INSERT INTO t VALUES (NOW(6));"
SELECT * FROM t;"
+----------------------------+"
| d |"
+----------------------------+"
| 2013-04-12 13:35:44.000000 |"
+----------------------------+"

Range"0E6,"default"0."

Fracconal"cme"is"a"feature"of"MySQL"5.6"
31"

1

©"2011"–"2014"PERCONA"

String Types
•  Fixed-length strings: CHAR(20)"

–  Storage always takes 20 characters.
•  Variable-length strings: VARCHAR(20)"

–  You can store a shorter string, and it takes only as many
characters as the length of your string, plus 1 or 2 bytes
for the length of the given string.

–  However, the string pads out to the maximum length
when loaded from the storage engine into the SQL layer
(e.g. result sets, sorting, temp tables).

32"

1

©"2011"–"2014"PERCONA"

Pads Out?!
•  This is a good reason to define a VARCHAR length

as compactly as possible.
•  Antipattern: VARCHAR(255) as default string type.

–  Makes no sense for strings that can never be that long,
e.g. postal codes, IP addresses, MD5 hashes.

33"

1

©"2011"–"2014"PERCONA"

Character Sets
•  A property of character-based types

–  They limit the characters available
–  How they are encoded
–  How much spaces they take

•  Examples:
–  utf8
–  ascii
–  latin1

34"

1

©"2011"–"2014"PERCONA"

Facts About Character Sets
•  A database, a table and a row can have a defined

character set, but the first two are only defaults.
•  utf8 in MySQL is a variable-length encoding

between 1 and 3 bytes per character.
–  But strings pad out to 3 bytes per character in memory,

sorting, temp tables, etc.
–  utf8 only covers the Basic Multilingual Plane. For full

UTF-8 (4 bytes) support, use utf8mb4.

35"

1

©"2011"–"2014"PERCONA"

Collation
•  A collation is linked to a charset. It modifies the

way character strings are compared by default
(i.e.: case sensitiveness).
–  As a consequence, they also modify the sorting order

•  Some example collations:
–  latin1_german2_ci
–  latin1_general_ci
–  latin1_general_cs
–  latin1_bin
–  latin1_spanish_ci

36"36"

1

©"2011"–"2014"PERCONA"

Character Set Pitfalls
•  Comparing strings of different character sets or

collations spoils the benefit of indexes, which relies
on sorting order. Joins will be a lot slower.

•  Mismatching the character sets for the client, the
connection, and the database can cause confusing
effects as text is converted back and forth.

•  Storing text strings in a binary column loses
character set information.

1

©"2011"–"2014"PERCONA"

BLOB and TEXT
•  BLOB for binary data of variable length.
•  TEXT for text of variable length, with character set.

Q: What’s the difference between VARCHAR(65535) and TEXT?
A: VARCHAR can have a DEFAULT value.

TINYBLOB" TINYTEXT" 255"

BLOB" TEXT" 65535" 64KB"E"1"

MEDIUMBLOB" MEDIUMTEXT" 16777215"" 16MB"E"1"

LONGBLOB" LONGTEXT" 4294967295"" 4GB"E"1"

38"

1

©"2011"–"2014"PERCONA"

Indexing BLOB and TEXT
•  Maximum index length is 1000 bytes*, so you must

use a prefix index.
ALTER TABLE title ADD KEY (title(50));"

prefix"
length"

39"

*"Remember"UTFE8"characters"count"as"3"bytes"per"character!"

1

©"2011"–"2014"PERCONA"

ENUM
•  MySQL-specific data type (not standard SQL, and

not supported by other RDBMS brands).
•  You declare the data type as a list of string values,

and MySQL stores these strings once, as part of the
table definition.
CREATE TABLE t (sex ENUM('male', 'female'));"

•  When you insert a row, the value of the ENUM
column is just an integer—the ordinal position of
the string in the ENUM.

40"

1

©"2011"–"2014"PERCONA"

Sorting by ENUM
•  Sort order may be counter-intuitive.

INSERT INTO t VALUES ('female'), ('male');"
SELECT * FROM t ORDER BY sex;"
+--------+"
| sex |"
+--------+"
| male |"
| female |"
+--------+"

sort"order"is"by"the"ordinal"
integer,"not"alphabeccal"

41"

1

©"2011"–"2014"PERCONA"

SET
•  Another MySQL-specific data type (not standard).
•  Like ENUM, you declare a list of string values:

CREATE TABLE name (
 name TEXT,
 skills SET('actor', 'dancer', 'singer')

);

•  When you insert a row, a single column can accept any
combination of multiple values from the SET.
INSERT INTO name VALUES
(‘Zooey Deschanel’, ‘actor,singer’);

•  The value is stored as a bitfield of up to 64 bits
internally, so the SET may have up to 64 elements.

42"

1

©"2011"–"2014"PERCONA"

Drawbacks of ENUM and SET
•  You need to ALTER TABLE to change the values.
•  Reordering or deleting a value is a table restructure.
•  Awkward to query the permitted values.

SELECT COLUMN_TYPE  
FROM INFORMATION_SCHEMA.COLUMNS  
WHERE TABLE_NAME='t';"
+-----------------------+"
| column_type |"
+-----------------------+"
| enum('male','female') |"
+-----------------------+"

now"I"have"to"parse"this"

43"

1

©"2011"–"2014"PERCONA"

Mapping SQL Types to Java
•  JDBC result sets return java.lang.Object for

most SQL types.
–  The object is automatically given a more specific Java

type, based on the SQL data type.
–  Except binary strings, which return bytes[].

44"

1

©"2011"–"2014"PERCONA"

Mapping SQL Types to Java
ResultSet rs = stmt.executeQuery(
 "SELECT * FROM test.test_data_types");
ResultSetMetaData rsm = rs.getMetaData();
while (rs.next()) {
 for (i=1; i<=rsm.getColumnCount(); ++i) {
 Object o = rs.getObject()
 System.out.println(
 o.getClass().getName()+" "+o.toString()
);
 }
}

45"

1

©"2011"–"2014"PERCONA"

Mapping SQL Types to Java
SQL%Type% Java%Type% Precision%

BIGINT" java.lang.Long" 20"

BIGINT"UNSIGNED" java.math.BigInteger" 20"

INT" java.lang.Integer" 11"

INT"UNSIGNED" java.lang.Long" 10"

SMALLINT" java.lang.Integer" 6"

SMALLINT"UNSIGNED" java.lang.Integer" 5"

TINYINT" java.lang.Integer" 4"

TINYINT"UNSIGNED" java.lang.Integer" 3"

46"

1

©"2011"–"2014"PERCONA"

Mapping SQL Types to Java
SQL%Type% Java%Type% Precision%

FLOAT" java.lang.Float" 12"

DOUBLE" java.lang.Double" 22"

DECIMAL(9,2)" java.lang.BigDecimal" 9"

BIT(1)" java.lang.Boolean" 1"

47"

1

©"2011"–"2014"PERCONA"

Mapping SQL Types to Java
SQL%Type% Java%Type% Precision%

DATE" java.sql.Date" 10"

DATETIME" java.sql.Timestamp" 19"

DATETIME(6)" java.sql.Timestamp" 26"

TIME" java.sql.Time" 10"

TIME(6)" java.sql.Time" 17"

TIMESTAMP" java.sql.Timestamp" 19"

TIMESTAMP(6)" java.sql.Timestamp" 26"

YEAR" java.sql.Date" 4"

48"

1

©"2011"–"2014"PERCONA"

Mapping SQL Types to Java
SQL%Type% Java%Type% Precision%

CHAR(N)" java.lang.String" N"

VARCHAR(N)" java.lang.String" N"

LONGTEXT" java.lang.String" 2147483647"

MEDIUMTEXT" java.lang.String" 16777215"

TEXT" java.lang.String" 65535"

TINYTEXT" java.lang.String" 255"

ENUM(‘A’,"‘B’,"‘C’)" java.lang.String" 1"

SET(‘A’,"‘B’,"‘C’)" java.lang.String" 5"

49"

1

©"2011"–"2014"PERCONA"

Mapping SQL Types to Java
SQL%Type% Java%Type% Precision%

LONGBLOB" byte[]" 2147483647"

MEDIUMBLOB" byte[]" 16777215"

BLOB" byte[]" 65535"

TINYBLOB" byte[]" 255"

BINARY(N)"or"CHAR(N)"
CHARACTER"SET"BINARY"

byte[]" N"

VARBINARY(N)"or"VARCHAR(N)"
CHARACTER"SET"BINARY"

byte[]" N"

BIT(N)"for"N">"1" byte[]" N"

getObject()"returns"garbage"for"these;"use"getBytes()"instead

50"

1

©"2011"–"2014"PERCONA"

Encrypted Data
•  MySQL doesn’t support a transparently encrypted

data type. Alternatives:
–  Store your data directory on an encrypted filesystem.
–  Encrypt in your application before inserting with SQL.
–  Encrypt/decrypt using a built-in MySQL functions:
INSERT INTO mytable (comment)
VALUES (AES_ENCRYPT('shhh!', 'password'));

SELECT AES_DECRYPT(comment, 'password')
FROM mytable;

51"

1

©"2011"–"2014"PERCONA"

TABLE DESIGN
Schema Design

52"

1

©"2011"–"2014"PERCONA"

What Is a Table?
•  Tables have headings that define column names and

data types.
•  Tables have rows, that have the same columns as

the heading.
•  Each column has the same name and data type on

every row of that table.

53"

1

©"2011"–"2014"PERCONA"

What Tables Do I Need?
•  Each data entity in your application.
•  Each attribute that may have multiple values.
•  Lookup tables.
•  Many-to-many relationship tables.
•  Temporary tables.

56"

1

©"2011"–"2014"PERCONA"

Data Entity Tables
•  One table for each distinct entity in your application

–  E.g. titles, users, keywords.
•  Each entity has its own set of attribute columns.

–  If you have two objects with different attributes, it’s a
clue that they are two separate types of entities and
need two separate tables.

57"

1

©"2011"–"2014"PERCONA"

Multi-Valued Attribute Tables
•  If an attribute can have multiple values, make a new

table.
–  E.g. movie info:
CREATE TABLE `movie_info` (
 id int AUTO_INCREMENT PRIMARY KEY,
 movie_id int NOT NULL,
 info_type_id int NOT NULL,
 info text NOT NULL,
 note text,
 FOREIGN KEY (movie_id) REFERENCES title(id)
);
–  Your entity tables reference a lookup table with a foreign key.

58"

1

©"2011"–"2014"PERCONA"

Lookup Tables
•  An attribute may be limited to a finite set of values.

–  E.g. role_type
•  Create a separate table to list the permitted values.

CREATE TABLE role_type (
 id int AUTO_INCREMENT PRIMARY KEY,
 role varchar(32) NOT NULL,
 UNIQUE KEY `role` (`role`)
) ENGINE=InnoDB AUTO_INCREMENT=13;

–  Lookup tables typically have a small number of rows, and
don’t get frequent updates.

–  Your entity tables reference a lookup table with a foreign key.

59"

1

©"2011"–"2014"PERCONA"

Many-to-Many Relationship Tables
•  Many-to-many relationships should use an intersection

table:
–  E.g. movies have many keywords, keywords can apply to

many movies.
CREATE TABLE movie_keyword ( 
 movie_id INT NOT NULL,  
 keyword_id INT NOT NULL,  
 PRIMARY KEY (movie_id, keyword_id),  
 FOREIGN KEY (movie_id) REFERENCES title(id),  
 FOREIGN KEY (keyword_id) REFERENCES keyword(id)  
);"
–  These tables reference both entity tables with foreign keys.

60"

1

©"2011"–"2014"PERCONA"

Temporary Tables
•  Some queries create temp tables implicitly.

–  GROUP BY, ORDER BY, UNION, views, subqueries.
Sometimes you can avoid this with the right indexes.

–  Created as MEMORY, may spool to disk as MyISAM.
•  You can also create a temp table explicitly.

–  CREATE TEMPORARY TABLE …
–  Good for interim result sets.

•  Temp tables are visible only to the session, and are
dropped automatically when the session ends.

61"

1

©"2011"–"2014"PERCONA"

One Column per Attribute
•  Keep it simple—one column per attribute.

–  This means storing first name and last name as two
separate fields if you need to query them independently.

CREATE TABLE users ( 
 . . .  
 first_name VARCHAR(100) NOT NULL,  
 last_name VARCHAR(100) NOT NULL  
);"

62"

1

©"2011"–"2014"PERCONA"

Don’t Reuse Columns
•  Don’t reuse columns for different information.
–  Column episode_or_season is confusing, it means

that the columns stores episode numbers sometimes.
–  You need to write more application code to parse data,

or use an extra column to distinguish them.
CREATE TABLE title ( 
 . . .  
 episode_or_season INT,  
 which_is_it ENUM('episode', 'season')  
);"

63"

1

©"2011"–"2014"PERCONA"

One Value per “Cell”
•  Store only one value in each column and row.
–  Don’t use comma-separated lists or multiple columns.
–  For instance, if your user has more than one phone

number, create another table.
CREATE TABLE phones ( 
 user_id INT NOT NULL,  
 phone_number VARCHAR(20) NOT NULL,  
 FOREIGN KEY (user_id)  
 REFERENCES users(user_id)  
);"

64"

1

©"2011"–"2014"PERCONA"

Is a Comma-Separated List So Bad?
•  Can’t ensure that each value is the right data type; no way to

prevent 1,2,3,banana,5
•  Can’t use a foreign key constraint.
•  Can’t use a unique constraint; no way to prevent 1,2,3,3,3,5
•  Can’t delete a value without fetching the whole list.
•  Can’t query the count/average/max/min of elements in the list.
•  Can’t fetch the list in sorted order.
•  Hard to search for all rows with a given value in the list.
•  Hard to join the values to the lookup table they reference.
•  Storing integers as strings takes twice as much space.

65"

1

©"2011"–"2014"PERCONA"

Table Design Pitfalls
•  Some physical realities affect table design choices:

–  Hot column on a wide table
–  Too many rows
–  Too many columns
–  Storage engine

66"

1

©"2011"–"2014"PERCONA"

Hot Column on a Wide Table

67"

CREATE TABLE users ( 
 ID INTEGER,  
 first_name VARCHAR(60),  
 last_name VARCHAR(60),  
 email VARCHAR(100),  
 phone_number varchar(20),  
 ...  
 last_login_date DATE  
);"

this"column"is"updated"
on"every"login"

1

©"2011"–"2014"PERCONA"

Hot Column on a Wide Table
•  The problem:

–  Wide tables take more pages in memory. If we only
need to update one column, it has a lot of overhead.

•  The solution:
–  Create another table with just last_login_date and

user_id referencing the users table.
–  Many narrow rows can fit on a single page.
–  Use a covering index (better for read-heavy situations).

68"

1

©"2011"–"2014"PERCONA"

Too Many Rows
•  The problem:
–  Tables grow without bound over time—to millions or

billions of rows.
–  Performance problems typically center around one or

two very large tables.
–  Examples: “log” table, “events” table, “properties” table.

69"

1

©"2011"–"2014"PERCONA"

Too Many Rows
•  Why this is a problem:
–  Queries and inserts get much slower once the table’s

indexes no longer fit in the buffer pool.
–  ALTER TABLE to add a column or index becomes very

painful.

70"

1

©"2011"–"2014"PERCONA"

Too Many Rows
•  The solutions:
–  Increase buffer pool size (can’t do this forever)
–  Split the table!

•  There are many strategies to split a table:
–  Use MySQL Partitioning
–  Implement your own partitioning in application code
–  Archive older data (use pt-archiver)

71"

1

©"2011"–"2014"PERCONA"

Too Many Columns
•  The problem:
–  MySQL stores the columns of each row together. A

query that only uses a few columns still needs to read
the whole row.

–  This consumes a lot more I/O and buffer pool space,
since the columns you need are stored sparsely among
columns you don’t need.

72"

1

©"2011"–"2014"PERCONA"

Too Many Columns
•  The solutions:
–  Store some of the data in smaller tables (a table with so

many columns might be improperly normalized).
–  If you find a lot of the additional columns are “optional

attributes,” then concatenate them together into one
BLOB column (more on this later).

73"

1

©"2011"–"2014"PERCONA"

Too Many Columns
•  The net wins from these solutions:
–  Fit more narrow rows per page.
–  Better utilization of buffer pool.
–  Reduced I/O when examining rows on risk.
–  If you’re in the habit of using SELECT * FROM table,

the query extracts less information (especially BLOBs).

74"

1

©"2011"–"2014"PERCONA"

Storage Engine
•  InnoDB is recommended in most cases.

–  Active development and enhancements in every release.
–  Buffers both data and index pages.
–  Supports transactions.
–  Supports ACID, won’t lose data in a crash.

•  MyISAM is a legacy table type.
–  MySQL no longer devotes development resources to it.
–  Filesystem buffering only.
–  Non-atomic changes lead to corruption.

75"

1

©"2011"–"2014"PERCONA"

NORMALIZATION &
DENORMALIZATION

Schema Design

76"

1

©"2011"–"2014"PERCONA"

What Is Normalization?
•  A formal process for designing tables:

–  Eliminate redundant storage of data.
–  Prevent data anomalies.

77"

1

©"2011"–"2014"PERCONA"

Why Normalize?
•  Best practice for organizing data, when you don’t

know which queries will be run against it.
•  Data can’t develop anomalies (orphaned rows,

inconsistencies).
•  You must understand the data relationships

(even if you denormalize later).

78"

1

©"2011"–"2014"PERCONA"

Myths About Normalization
•  Myth: “Normalization makes a database slower.

Denormalization makes a database faster.”
•  Myth: “Normalization splits up tables as much as

possible.”
•  Myth: “Normalization is using auto-increment

primary keys.”
•  Myth: “Third normal form is enough for anyone.”

79"

1

©"2011"–"2014"PERCONA"

First Normal Form
•  Wrong:

–  Comma-separated lists are impossible to index.
–  Multi-column attributes (never enough columns).

movie_id% keyword_list% star1% star2% star3%

207468" espionage,""
nuclearEbomb,""
ejectorEseat"

Sean"Connery" Gert"Fröbe" Honor"
Blackman"
"

ctle"

80"

1

©"2011"–"2014"PERCONA"

First Normal Form
•  Right:"

movie_id% Btle%

207468" Goldfinger"

movie_id% keyword_list%

207468" espionage"

207468" nuclearEbomb"

207468" ejectorEseat"

movie_id% star%

207468" Sean"Connery"

207468" Gert"Fröbe"

207468" Honor"Blackman"

cast_info" movie_keyword"

ctle"

81"

1

©"2011"–"2014"PERCONA"

Second Normal Form
•  Wrong:

–  movie_keyword table with keyword as well as
keyword_id can create inconsistencies:

movie_id% keyword_id% keyword%

1234" 6" silentEfilm"

2345" 6" silentEfilm"

3456" 6" silentEmovie"

movie_keyword"

82"

1

©"2011"–"2014"PERCONA"

Second Normal Form
•  Right:

–  Move keyword to its own table, where the keyword
appears only once:

movie_id% keyword_id%

1234" 6"

2345" 6"

3456" 6"

keyword_id% keyword%

5" handEprocessed"

6" silentEfilm"

7" experimentalEshort"

keyword"movie_keyword"

83"

1

©"2011"–"2014"PERCONA"

Third Normal Form
•  Wrong:

–  Adding a column not related to the table’s primary key.

movie_id% star% country%

207468" Sean"Connery" Scotland"

207468" Gert"Fröbe" Germany"

226354" Sean"Connery" Spain"

cast_info"

84"

1

©"2011"–"2014"PERCONA"

Third Normal Form
•  Right:

–  Star attributes belong in the separate name table, so
they appear only once, and can’t have inconsistencies.

star_id% star% country%

201693" Sean"Connery" Scotland"

343779" Gert"Fröbe" Germany"

movie_id% star_id%

207468" 201693"

207468" 343779"

226354" 201693"

cast_info"
name"

85"

1

©"2011"–"2014"PERCONA"

Fourth Normal Form
•  Wrong:

–  Store more than one many-to-many relationship in the
same intersection table.

–  Leads to duplication of some values, or else use NULL.

movie_id% star% company% keyword%

201693" Sean"Connery" Eon"Produccons" espionage"

201693" Gert"Fröbe" Eon"Produccons" nuclearEbomb"

201693" Honor"Blackman" Eon"Produccons" ejectorEseat"

cast_info"

86"

1

©"2011"–"2014"PERCONA"

Fourth Normal Form
•  Right:

–  Store each many-to-many relationship in a separate
intersection table.

movie_id% star%

201693" Sean"Connery"

201693" Gert"Fröbe"

201693" Honor"
Blackman"

cast_info"

movie_id% company%

201693" Eon"
Produccons"

movie_id% keyword%

201693" espionage"

201693" nuclearEbomb"

201693" ejectorEseat"

movie_keyword"

movie_company"

87"

1

©"2011"–"2014"PERCONA"

What Is Denormalization?
•  Judicious breaking of rules of normalization to get a

performance gain for certain queries.

88"

1

©"2011"–"2014"PERCONA"

Why Denormalize?
•  Basically, to reduce the work necessary during a

query by pre-computing it.
–  Avoid expensive expressions.
–  Avoid expensive SUM, COUNT, AVG, etc.
–  Avoid expensive JOINs.

•  This means you need to know what queries your
users will execute.

89"

1

©"2011"–"2014"PERCONA"

Are There “Denormal Forms?”
•  No formal definitions, but there are common

patterns of denormalization:
–  Precalculated expressions
–  Materialized aggregates
–  Redundant columns

90"

1

©"2011"–"2014"PERCONA"

Precalculated Expressions
•  Store results from expressions referencing other

columns, to make it easier or faster to query.
–  E.g. extract a month from a date:

movie_id% Btle% release_date% release_month%

207468" Goldfinger" 1964E09E17" 9"

574127" Thunderball" 1965E12E09" 12"

release_month%

9"

12"

Btle%

91"

1

©"2011"–"2014"PERCONA"

Materialized Aggregates
•  Also called “summary table.”
•  Precalculate a SUM(), COUNT(), AVG(),
GROUP_CONCAT() from related data.
–  E.g. AVG(movie_ratings.rating)

movie_id% Btle% release_date% release_month%

207468" Goldfinger" 1964E09E17" 9"

574127" Thunderball" 1965E12E09" 12"

raBng_avg%

7.8"

7.0"

Btle%

92"

1

©"2011"–"2014"PERCONA"

Redundant Columns
•  Avoid a JOIN by copying frequently-used columns

from related table(s).
id% person_id% name% movie_id% Btle% person_%

role_id%
role_name%

1514397" 201693" Connery,"
Sean"

207468" Goldfinger" 35721" James"Bond"

2601856" 343779" 207468"
"

366927"

cast_info"

name%

Connery,"
Sean"

Gert"Fröbe"

Btle%

Goldfinger"

Goldfinger"

role_name%

James"Bond"

Auric"
Goldfinger"

93"

1

©"2011"–"2014"PERCONA"

INDEX DESIGN
Schema Design

94"

1

©"2011"–"2014"PERCONA"

Over-Indexed Tables
•  Infrequently used indexes can be responsible for

decreasing write capacity.
•  It also increases memory and storage requirements.
•  For reads, the optimizer has more choices to make

and a more difficult decision process.

95"

1

©"2011"–"2014"PERCONA"

Under-Indexed Tables
•  Under-indexed tables can result in too many rows

needing to be examined after an index has been
used—or in the worst case, no index used.
–  This can cause contention on what contents you are able

to keep in memory—and it will likely increase the size of
your working set.

96"

1

©"2011"–"2014"PERCONA"

How to Find Duplicate Indexes
•  pt-duplicate-key-checker

wordpress.wp_posts

Key type_status_date ends with a prefix of the clustered index
Key definitions:
KEY `type_status_date` (`post_type`,`post_status`,`post_date`,`ID`),
PRIMARY KEY (`ID`),
Column types:
`post_type` varchar(20) not null default 'post'
`post_status` varchar(20) not null default 'publish'
`post_date` datetime not null default '0000-00-00 00:00:00'
`id` bigint(20) unsigned not null auto_increment
To shorten this duplicate clustered index, execute:
ALTER TABLE `wordpress`.`wp_posts` DROP INDEX `type_status_date`, ADD INDEX
`type_status_date` (`post_type`,`post_status`,`post_date`);

97"

1

©"2011"–"2014"PERCONA"

How to Find Unused Indexes
•  pt-index-usage

$ pt-index-usage slow.log
slow.log: 11% 03:58 remain
slow.log: 21% 03:43 remain
slow.log: 32% 03:09 remain
[...]
ALTER TABLE `tpcc`.`order_line` DROP KEY `fkey_order_line_2`; --
type:non-unique
ALTER TABLE `tpcc`.`orders` DROP KEY `idx_orders`; -- type:non-unique
ALTER TABLE `tpcc`.`stock` DROP KEY `fkey_stock_2`; -- type:non-unique

98"

1

©"2011"–"2014"PERCONA"

How to Find Unused Indexes
•  userstats in Percona Server (Google Patches)

–  INFORMATION_SCHEMA.INDEX_STATISTICS
•  PERFORMANCE_SCHEMA in MySQL 5.6

–  table_io_waits_summary_by_index_usage

99"

http://www.mysqlperformanceblog.com/2008/09/12/unused-indexes-by-single-query/

1

©"2011"–"2014"PERCONA"

Designing for Memory Fit
•  Index performance degrades sharply if indexes are

too large to fit in memory.
•  Initially the size of your indexes is small, and they

fit in memory easily.
–  Is that assumption going to remain true?
–  If YES—keep in mind the maximum size of indexes.
–  If NO—you need to test with synthetic data to make

sure performance does not suffer as data grows.

100"

1

©"2011"–"2014"PERCONA"

SQL CONSTRAINTS
Schema Design

101"

1

©"2011"–"2014"PERCONA"

Primary Keys
•  The purpose of a primary key is to allow you to

uniquely reference individual rows.
CREATE TABLE movie_keyword (
 id int NOT NULL AUTO_INCREMENT,
 movie_id int NOT NULL,
 keyword_id int NOT NULL,
 PRIMARY KEY (id)
);

DELETE FROM movie_keyword
WHERE id = 883543;

102"

1

©"2011"–"2014"PERCONA"

Auto-Increment Primary Keys
•  Using auto-increment generates a new value at the

end of the clustered index.
CREATE TABLE movie_keyword (
 id int NOT NULL AUTO_INCREMENT,
 movie_id int NOT NULL,
 keyword_id int NOT NULL,
 PRIMARY KEY (id)
);

INSERT INTO movie_keyword
(movie_id,keyword_id) VALUES (207468,5467);

103"

1

©"2011"–"2014"PERCONA"

Compound Primary Keys
•  Compound primary keys are okay too.

–  You can still reference rows uniquely.
CREATE TABLE movie_keyword (
 movie_id int NOT NULL,
 keyword_id int NOT NULL,
 PRIMARY KEY (movie_id, keyword_id)
);

DELETE FROM movie_keyword
WHERE (movie_id,keyword_id) = (207468,5467);

104"

1

©"2011"–"2014"PERCONA"

Optimizing Primary Keys
•  Match to your most common query if possible.

CREATE TABLE movie_keyword (
 movie_id int NOT NULL,
 keyword_id int NOT NULL,
 PRIMARY KEY (keyword_id, movie_id)
);

SELECT * FROM movie_keyword
WHERE keyword_id = 5467;

105"

1

©"2011"–"2014"PERCONA"

Piggy-Back on Secondary Keys
•  Every InnoDB secondary key implicitly contains the

primary key.
CREATE TABLE title (
 id int NOT NULL AUTO_INCREMENT,
 title text NOT NULL,
 PRIMARY KEY (id),
 KEY (title(50)) /* also includes id */
) ENGINE=InnoDB;

106"

1

©"2011"–"2014"PERCONA"

Our Results (Typical Case)

107"

CREATE TABLE uuid_users (
PRIMARY KEY,
emailaddress varchar(100),
firstname varchar(20),
lastname varchar(20),
birthday varchar(10),
occupation varchar(70), INDEX
(emailaddress),
INDEX(lastname, firstname),
INDEX(occupation)

) ENGINE=InnoDB;

The UUID primary key makes
the table about 65% larger.

Inserting 250K �Real� Names

1

©"2011"–"2014"PERCONA"

Inserting Random Integers

Our Results (Worst Case)

108"

The UUID primary key makes
the table almost x3!

CREATE TABLE mydata (
PRIMARY KEY,
col1 INT NOT NULL,
col2 INT NOT NULL,
col3 INT NOT NULL,
col4 INT NOT NULL,
col5 INT NOT NULL,
INDEX (col1),
INDEX (col2),
INDEX (col3),
INDEX (col4),
INDEX (col5)

) ENGINE=InnoDB;

1

©"2011"–"2014"PERCONA"

Primary Key Data Types
•  Choose the most compact data type that fits.

–  SMALLINT or INT or BIGINT for an auto-increment.
•  Avoid long strings if possible.

–  For example, UUID’s are often used for uniqueness
across clusters, but they are long strings. Also, UUID’s
insert in random order, causing fragmentation.

109"

1

©"2011"–"2014"PERCONA"

Unique Keys
•  Used if other column or columns need to be unique.

–  You can have multiple unique keys per table.
–  May be NULL, whereas primary keys cannot.
CREATE TABLE movie_keyword (
 id int NOT NULL AUTO_INCREMENT,
 movie_id int NOT NULL,
 keyword_id int NOT NULL,
 PRIMARY KEY (id),
 UNIQUE KEY (keyword_id, movie_id)
);

110"

1

©"2011"–"2014"PERCONA"

Foreign Keys
•  Important to enforce referential integrity.

CREATE TABLE movie_keyword (
 movie_id int NOT NULL,
 keyword_id int NOT NULL,
 PRIMARY KEY (keyword_id, movie_id),
 FOREIGN KEY (movie_id)
 REFERENCES title(id),
 FOREIGN KEY (keyword_id)
 REFERENCES keyword(id)
);

111"

1

©"2011"–"2014"PERCONA"

Fun Foreign Key Facts
•  Only InnoDB supports foreign keys.

–  MyISAM parses but ignores foreign keys.
•  Foreign keys can reference tables across databases.
•  Foreign keys can reference either a primary key or a

unique key.
•  The data type of a foreign key must match its

referenced column exactly—type, sign, precision,
character set.
–  Except for varchar length.

112"

1

©"2011"–"2014"PERCONA"

Check Constraints
•  Enforces some business rules, e.g. postal codes must

match a pattern of numbers and/or letters.
•  MySQL parses but ignores CHECK constraints.
•  Workarounds:

–  Foreign keys to a lookup table
–  ENUM() data type
–  Triggers

113"

1

©"2011"–"2014"PERCONA"

Nullability
•  NULL is for missing or unknown values.

–  If the column is mandatory, declare it NOT NULL.
–  No significant performance cost; declare NOT NULL for

reasons of logic, not optimization.
•  Don’t use -1 or 'N/A' or other “special” value to

signify a missing value.
–  This confuses expressions, aggregates, etc.

114"

1

©"2011"–"2014"PERCONA"

SCHEMA DESIGN TOOLS
Schema Design

118"

1

©"2011"–"2014"PERCONA"

Schema Design Tools
•  Use a program where you can map out each of the

objects on an Entity-Relationship (ER) diagram.
–  MySQL Workbench.

•  Export the ER diagram to SQL.

119"

1

©"2011"–"2014"PERCONA"

1

©"2011"–"2014"PERCONA"

Can You Make a Schema Better?
•  It’s very hard to retrofit into an application.
•  For some obvious bad-choices, the “band aid”

approach may work.
–  This command shows the most optimal data type:
–  SELECT * FROM title  
PROCEDURE ANALYSE(1,1)"

121"

hNp://dev.mysql.com/doc/refman/5.6/en/procedureEanalyse.html""

1

©"2011"–"2014"PERCONA"

VIEWS
Schema Design

122"

1

©"2011"–"2014"PERCONA"

Views
•  Create some �hidden� work. Some views need to

create temporary tables.
•  No indexes on views.
•  No materialized views

123"

1

©"2011"–"2014"PERCONA"

STORED ROUTINES
Schema Design

124"

1

©"2011"–"2014"PERCONA"

Stored Routines in MySQL
•  You can write blocks of code in an SQL-like

language that runs in the database server.
•  Your application can invoke stored procedures with
CALL ProcedureName().

•  Your application can invoke stored functions in any
SQL expression like SELECT FunctionName()...

125"

1

©"2011"–"2014"PERCONA"

Stored Routine Culture
•  Using stored routines is traditional in commercial

enterprise databases, but MySQL’s implementation
is primitive by comparison.

•  They have their place, but don’t plan to use them
extensively. MySQL is not Oracle.

126"

1

©"2011"–"2014"PERCONA"

Cons of MySQL Stored Routines (1)
•  They are not compiled. They are parsed on first

execution in each connection.
•  There are no debugger features.
•  Language is limited and not extensible.
•  No packages, libraries, or inheritance features.

127"

1

©"2011"–"2014"PERCONA"

Cons of MySQL Stored Routines (2)
•  Procedures with dynamic SQL are unsafe for

statement based replication.
•  Query logs contain the CALL but not the individual

statements run inside the routine.
–  Percona Server has an option to fix this:
log_slow_sp_statements
http://www.percona.com/doc/percona-server/5.5/
diagnostics/slow_extended_55.html

128"

1

©"2011"–"2014"PERCONA"

Pros of MySQL Stored Routines
•  You can write procedures that performs a complex,

multi-step task, and avoid transferring query
results across the network.

•  You can grant limited privileges to a MySQL user,
but allow them privilege to call a procedure that has
more privileges itself.

129"

1

©"2011"–"2014"PERCONA"

Events
•  No (built-in) protection against events running

simultaneously.
•  Same restrictions as routines – very hard to get

consistently working with Replication.

130"

1

©"2011"–"2014"PERCONA"

TRIGGERS
Schema Design

131"

1

©"2011"–"2014"PERCONA"

Triggers
•  Similar limitations to Stored Procedures.
•  Only one for-each-row trigger per event.
•  Triggers create a lot of �hidden work�, and increase

server locking.
•  No elegant way to disable triggers for data reload /

batch operations.
•  Behavior is different between statement and row

based replication.

132"

1

©"2011"–"2014"PERCONA"

OBJECT-RELATIONAL MAPPING
Schema Design

133"

1

©"2011"–"2014"PERCONA"

ORM Pros
•  Let developers access data in a familiar object-

oriented paradigm, instead of writing SQL.
•  Improve developer productivity. E.g., eliminate

repetitive code to copy query result fields to object
members and vice-versa.

•  Infer object relationships from SQL metadata.
•  Generate boilerplate code for basic queries.

134"

1

©"2011"–"2014"PERCONA"

ORM Cons
•  Fails to handle all SQL query constructs (JOIN

types, GROUP BY, HAVING, DISTINCT, etc.)
•  Some ORM frameworks get metadata from XML

instead of inspecting the database. If you alter the
schema, you must also update the ORM.

•  Queries generated by an ORM are sometimes
ridiculously inefficient (e.g. dozens of joins).

•  Abstract table definition makes bad choices about
datatypes (e.g. VARCHAR(255) for everything).

135"

1

©"2011"–"2014"PERCONA"

ORM Cons (cont.)
•  ORM hides rampantly inefficient patterns of

querying.
/* query for one order and its children */

$order = Order::find(1234);

$items = $order->getLineItems();

/* query for N multiple orders, and run N
queries for children of each order */

$orders = Order::findByUser(‘bill’);

$items = $orders->getAllLineItems();

136"

1

©"2011"–"2014"PERCONA"

What to Do?
•  Use the ORM initially, to gain the developer

productivity advantage.
•  Use available options of the ORM, so you aren’t

relying on default (inefficient) behavior.
•  Later, as you measure performance bottlenecks,

unravel your ORM usage, replacing it with hand-
coded SQL.
–  Just like a systems programmer would optimize C code

with blocks of assembly language.

137"

1

©"2011"–"2014"PERCONA"

EXTENSIBLE SCHEMA DESIGN
Schema Design

1"

1

©"2011"–"2014"PERCONA"

 !
“I need to add a "
new column— "
but I don’t want
ALTER TABLE to

lock the application
for a long time.”!

2"

1

©"2011"–"2014"PERCONA"

How MySQL Does ALTER TABLE
1.  Lock the table.
2.  Make a new, empty the table like the original.
3.  Modify the columns of the new empty table.
4.  Copy all rows of data from original to new table…

no matter how long it takes.
5.  Swap the old and new tables.
6.  Unlock the tables & drop the original.

3"

1

©"2011"–"2014"PERCONA"

Extensibility
•  How can we add new attributes without the pain of

schema changes?
–  Object-oriented modeling
–  Sparse columns

•  Especially to support user-defined attributes at
runtime or after deployment:
–  Content management systems
–  E-commerce frameworks
–  Games

4"

1

©"2011"–"2014"PERCONA"

Solutions
•  “Extra Columns”
•  Entity-Attribute-Value
•  Class Table Inheritance
•  Serialized LOB & Inverted Indexes
•  Online Schema Changes
•  Non-Relational Databases

5"

1

©"2011"–"2014"PERCONA"

EXTRA COLUMNS
Extensible Schema Design

6"

1

©"2011"–"2014"PERCONA"

Table with Fixed Columns
CREATE TABLE Title (!
 id int(11) NOT NULL AUTO_INCREMENT PRIMARY KEY,!
 title text NOT NULL,!
 imdb_index varchar(12) DEFAULT NULL,!
 kind_id int(11) NOT NULL,!
 production_year int(11) DEFAULT NULL,!
 imdb_id int(11) DEFAULT NULL,!
 phonetic_code varchar(5) DEFAULT NULL,!
 episode_of_id int(11) DEFAULT NULL,!
 season_nr int(11) DEFAULT NULL,!
 episode_nr int(11) DEFAULT NULL,!
 series_years varchar(49) DEFAULT NULL,!
 title_crc32 int(10) unsigned DEFAULT NULL!
);!

7"

1

©"2011"–"2014"PERCONA"

Table with Extra Columns
CREATE TABLE Title (!
 id int(11) NOT NULL AUTO_INCREMENT PRIMARY KEY,!
 title text NOT NULL,!
 imdb_index varchar(12) DEFAULT NULL,!
 kind_id int(11) NOT NULL,!
 production_year int(11) DEFAULT NULL,!
 imdb_id int(11) DEFAULT NULL,!
 phonetic_code varchar(5) DEFAULT NULL,!
 extra_data1 TEXT DEFAULT NULL,!
 extra_data2 TEXT DEFAULT NULL, !
 extra_data3 TEXT DEFAULT NULL,!
 extra_data4 TEXT DEFAULT NULL,!
 extra_data5 TEXT DEFAULT NULL,!
 extra_data6 TEXT DEFAULT NULL,!
);!

8"

useforwhatever$comes$
up$that$we$didn’t$thinkof
atthestartofthe$project$$

1

©"2011"–"2014"PERCONA"

Adding a New Attribute
UPDATE Title  
SET extra_data3 = 'PG-13'  
WHERE id = 207468;!

9"

remember$which$
columnyouusedfor
eachnewa9ribute!$

1

©"2011"–"2014"PERCONA"

Pros and Cons
•  Good solution:

–  No ALTER TABLE necessary to use a column for a new
attribute—only a project decision is needed.

–  Related to Single Table Inheritance (STI)
http://martinfowler.com/eaaCatalog/singleTableInheritance.html

10"

1

©"2011"–"2014"PERCONA"

Pros and Cons
•  Bad solution:

–  If you run out of extra columns, then you’re back to
ALTER TABLE.

–  Anyone can put any data in the columns—you can’t
assume consistent usage on every row.

–  Columns lack descriptive names or the right data type.

11"

1

©"2011"–"2014"PERCONA"

ENTITY-ATTRIBUTE-VALUE
Extensible Schema Design

12"

1

©"2011"–"2014"PERCONA"

EAV
•  Store each attribute in a row instead of a column.
CREATE TABLE Attributes ( 
 entity INT NOT NULL,  
 attribute VARCHAR(20) NOT NULL,  
 value TEXT,  
 FOREIGN KEY (entity)  
 REFERENCES Title (id)  
);!

13"

1

©"2011"–"2014"PERCONA"

Example EAV Data
SELECT * FROM Attributes;!
+--------+-----------------+---------------------+!
| entity | attribute | value |!
+--------+-----------------+---------------------+!
| 207468 | title | Goldfinger |!
| 207468 | production_year | 1964 |!
| 207468 | rating | 7.8 |!
| 207468 | length | 110 min |!
+--------+-----------------+---------------------+!
!
!
! 14"

1

©"2011"–"2014"PERCONA"

Adding a New Attribute
•  Simply use INSERT with a new attribute name.

INSERT INTO Attributes (entity, attribute, value)  
VALUES (207468, 'budget', '$3,000,000');!

15"

1

©"2011"–"2014"PERCONA"

Query EAV as a Pivot
SELECT a.entity AS id,!
 a.value AS title,!
 y.value AS production_year,!
 r.value AS rating,  
 b.value AS budget!
FROM Attributes AS a!
JOIN Attributes AS y USING (entity)!
JOIN Attributes AS r USING (entity)!
JOIN Attributes AS b USING (entity)!
WHERE a.attribute = 'title'!
 AND y.attribute = 'production_year'!
 AND r.attribute = 'rating'  
 AND b.attribute = 'budget';!
+--------+------------+-----------------+--------+------------+!
| id | title | production_year | rating | budget |!
+--------+------------+-----------------+--------+------------+!
| 207468 | Goldfinger | 1964 | 7.8 | $3,000,000 |!
+--------+------------+-----------------+--------+------------+!

16"

another$join$required$
for$each$addi<onal$
a9ribute$

1

©"2011"–"2014"PERCONA"

Sounds Simple Enough, But…
•  NOT NULL doesn’t work
•  FOREIGN KEY doesn’t work
•  UNIQUE KEY doesn’t work
•  Data types don’t work
•  Searches don’t scale
•  Indexes and storage are inefficient

17"

1

©"2011"–"2014"PERCONA"

Constraints Don’t Work
CREATE TABLE Attributes ( 
 entity INT NOT NULL,  
 attribute VARCHAR(20) NOT NULL,  
 value TEXT NOT NULL,  
 FOREIGN KEY (entity)  
 REFERENCES Title (id)  
 FOREIGN KEY (value)  
 REFERENCES Ratings (rating)  
);!

18"

constraints$apply$
toallrows,not
just$rows$fora
specific$a9ribute$
type$

1

©"2011"–"2014"PERCONA"

Data Types Don’t Work
INSERT INTO Attributes (entity, attribute, value)  
VALUES (207468, 'budget', 'banana');!

19"

the$database$can’t$prevent$
the$applica<on$from$storing$
nonsense$data$

1

©"2011"–"2014"PERCONA"

Add Typed Value Columns?
CREATE TABLE Attributes ( 
 entity INT NOT NULL,  
 attribute VARCHAR(20) NOT NULL,  
 intvalue BIGINT,  
 floatvalue FLOAT,  
 textvalue TEXT,  
 datevalue DATE,  
 datetimevalue DATETIME,  
 FOREIGN KEY (entity)  
 REFERENCES Title (id)  
);!

20"

nowthe
applica<on$needs$
to$know$which$
data$type$column$
tousefor$each$
a9ribute$when$
inser<ngand
querying$$

1

©"2011"–"2014"PERCONA"

Searches Don’t Scale
•  You must hard-code each attribute name,

–  One JOIN per attribute!

•  Alternatively, you can query all attributes, but the

result is one attribute per row:
SELECT attribute, value  
FROM Attributes  
WHERE entity = 207468;!
–  …and sort it out in your application code.

21"

1

©"2011"–"2014"PERCONA"

Indexes and Storage Are Inefficient
•  Many rows, with few distinct attribute names.

–  Poor index cardinality.
•  The entity and attribute columns use extra

space for every attribute of every “row.”
–  In a conventional table, the entity is the primary key, so

it’s stored only once per row.
–  The attribute name is in the table definition, so it’s

stored only once per table.

22"

1

©"2011"–"2014"PERCONA"

Pros and Cons
•  Good solution:

–  No ALTER TABLE needed again—ever!
–  Supports ultimate flexibility, potentially any “row” can

have its own distinct set of attributes.

23"

1

©"2011"–"2014"PERCONA"

Pros and Cons
•  Bad solution:

–  SQL operations become more complex.
–  Lots of application code required to reinvent features

that an RDBMS already provides.
–  Doesn’t scale well—pivots required.

24"

1

©"2011"–"2014"PERCONA"

CLASS TABLE INHERITANCE
Extensible Schema Design

25"

1

©"2011"–"2014"PERCONA"

Subtypes
•  Titles includes:

–  Films
–  TV shows
–  TV episodes
–  Video games

•  Some attributes apply to all, other attributes apply
to one subtype or the other.

26"

1

©"2011"–"2014"PERCONA"

Title Table
CREATE TABLE Title (!
 id int(11) NOT NULL AUTO_INCREMENT PRIMARY KEY,!
 title text NOT NULL,!
 imdb_index varchar(12) DEFAULT NULL,!
 kind_id int(11) NOT NULL,!
 production_year int(11) DEFAULT NULL,!
 imdb_id int(11) DEFAULT NULL,!
 phonetic_code varchar(5) DEFAULT NULL,!
 episode_of_id int(11) DEFAULT NULL,!
 season_nr int(11) DEFAULT NULL,!
 episode_nr int(11) DEFAULT NULL,!
 series_years varchar(49) DEFAULT NULL,!
 title_crc32 int(10) unsigned DEFAULT NULL!
);!

27"

only"for"tv"
shows"

1

©"2011"–"2014"PERCONA"

Title Table with Subtype Tables
CREATE TABLE Title (!
 id int(11) NOT NULL AUTO_INCREMENT PRIMARY KEY,!
 title text NOT NULL,!
 imdb_index varchar(12) DEFAULT NULL,!
 kind_id int(11) NOT NULL,!
 production_year int(11) DEFAULT NULL,!
 imdb_id int(11) DEFAULT NULL,!
 phonetic_code varchar(5) DEFAULT NULL,!
 title_crc32 int(10) unsigned DEFAULT NULL,!
 PRIMARY KEY (id)!
);!
!
CREATE TABLE Film (!
 id int(11) NOT NULL PRIMARY KEY,  
 aspect_ratio varchar(20),!
 FOREIGN KEY (id) REFERENCES Title(id)!
);!
!
CREATE TABLE TVShow (!
 id int(11) NOT NULL PRIMARY KEY,!
 episode_of_id int(11) DEFAULT NULL,!
 season_nr int(11) DEFAULT NULL,!
 episode_nr int(11) DEFAULT NULL,!
 series_years varchar(49) DEFAULT NULL,!
 FOREIGN KEY (id) REFERENCES Title(id)!
);!

Title"

Film" TVShow"

1:1" 1:1"

28"

1

©"2011"–"2014"PERCONA"

Adding a New Subtype
•  Create a new table—without locking existing tables.

CREATE TABLE VideoGames ( 
 id int(11) NOT NULL PRIMARY KEY,  
 platforms varchar(100) NOT NULL,  
 FOREIGN KEY (id)  
 REFERENCES Title(id)  
);!

29"

1

©"2011"–"2014"PERCONA"

Pros and Cons
•  Good solution:

–  Best to support a finite set of subtypes, which are likely
unchanging after creation.

–  Data types and constraints work normally.
–  Easy to create or drop subtype tables.
–  Easy to query attributes common to all subtypes.
–  Subtype tables are shorter, indexes are smaller.

30"

1

©"2011"–"2014"PERCONA"

Pros and Cons
•  Bad solution:

–  Adding one entry takes two INSERT statements.
–  Querying attributes of subtypes requires a join.
–  Querying all types with subtype attributes requires

multiple joins (as many as subtypes).
–  Adding a common attribute locks a large table.
–  Adding an attribute to a populated subtype locks a

smaller table.

31"

1

©"2011"–"2014"PERCONA"

SERIALIZED LOB
Extensible Schema Design

32"

1

©"2011"–"2014"PERCONA"

What is Serializing?
•  Objects in your applications can be represented in

serialized form—i.e., convert the object to a scalar
string that you can save and load back as an object.
–  Java objects implementing Serializable and

processed with writeObject()!
–  PHP variables processed with serialize()!
–  Python objects processed with pickle.dump()!
–  Data encoded with XML, JSON, YAML, etc.

33"

1

©"2011"–"2014"PERCONA"

What Is a LOB?
•  The BLOB or TEXT datatypes can store long

sequences of bytes or characters, such as a string.
•  You can store the string representing your object

into a single BLOB or TEXT column.
–  You don’t need to define SQL columns for each field of

your object.

34"

1

©"2011"–"2014"PERCONA"

Title Table with Serialized LOB
CREATE TABLE Title ( 
 id int(11) NOT NULL AUTO_INCREMENT PRIMARY KEY,  
 title text NOT NULL,  
 imdb_index varchar(12) DEFAULT NULL,  
 kind_id int(11) NOT NULL,  
 production_year int(11) DEFAULT NULL,  
 imdb_id int(11) DEFAULT NULL,  
 phonetic_code varchar(5) DEFAULT NULL,  
 title_crc32 int(10) unsigned DEFAULT NULL  
 extra_info TEXT  
);!

35"

holds$everything$
else,$plus$anything$
we$didn’t$thinkof

1

©"2011"–"2014"PERCONA"

Adding a New Attribute
UPDATE Title  
SET extra_info =  
 '{  
 "episode_of_id": "1291895",  
 "season_nr": "5",  
 "episode_nr": "6"  
 }'  
WHERE id = 1292057;!

36"

1

©"2011"–"2014"PERCONA"

Using XML in MySQL
•  MySQL has limited support for XML.

SELECT id, title,  
 ExtractValue(extra_info, '/episode_nr')  
 AS episode_nr  
FROM Title  
WHERE ExtractValue(extra_info,  
 '/episode_of_id') = 1292057;!

•  Forces table-scans, not possible to use indexes.

hHp://dev.mysql.com/doc/refman/5.6/en/xmlQfuncSons.html""
37"

1

©"2011"–"2014"PERCONA"

Pros and Cons
•  Good solution:

–  Store any object and add new custom fields at any time.
–  No need to do ALTER TABLE to add custom fields.

39"

1

©"2011"–"2014"PERCONA"

Pros and Cons
•  Bad solution:

–  Not indexable.
–  Must return the whole object, not an individual field.
–  Must write the whole object to update a single field.
–  Hard to use a custom field in a WHERE clause, GROUP BY

or ORDER BY.
–  No support in the database for data types or

constraints, e.g. NOT NULL, UNIQUE, FOREIGN KEY.

40"

1

©"2011"–"2014"PERCONA"

ONLINE SCHEMA CHANGES
Extensible Schema Design

48"

1

©"2011"–"2014"PERCONA"

pt-online-schema-change
•  Performs online, non-blocking ALTER TABLE.

–  Captures concurrent updates to a table while
restructuring.

–  Some risks and caveats exist; please read the manual
and test carefully.

•  Free tool—part of Percona Toolkit.
–  http://www.percona.com/doc/percona-toolkit/pt-online-schema-

change.html

49"

1

©"2011"–"2014"PERCONA"

How MySQL Does ALTER TABLE
1.  Lock the table.
2.  Make a new, empty the table like the original.
3.  Modify the columns of the new empty table.
4.  Copy all rows of data from original to new table.
5.  Swap the old and new tables.
6.  Unlock the tables & drop the original.

50"

1

©"2011"–"2014"PERCONA"

How pt-osc Does ALTER TABLE
 Lock the table.
1.  Make a new, empty the table like the original.
2.  Modify the columns of the new empty table.
3.  Copy all rows of data from original to new table.

a.  Iterate over the table in chunks, in primary key order.
b.  Use triggers to capture ongoing changes in the

original, and apply them to the new table.
4.  Swap the tables, then drop the original.
 Unlock the tables.

51"

1

©"2011"–"2014"PERCONA"

Visualize This (1)
cast_info" aYer"

trigger"

cast_info"new"

52"

1

©"2011"–"2014"PERCONA"

Visualize This (2)
cast_info" aYer"

trigger"

cast_info"new"

53"

1

©"2011"–"2014"PERCONA"

Visualize This (3)
cast_info" aYer"

trigger"

cast_info"new"

54"

1

©"2011"–"2014"PERCONA"

Visualize This (4)
cast_info" aYer"

trigger"

cast_info"new"

55"

1

©"2011"–"2014"PERCONA"

Visualize This (5)
cast_info" aYer"

trigger"

cast_info"new"

56"

1

©"2011"–"2014"PERCONA"

Visualize This (6)
cast_info" cast_info"old"

DROP%

57"

1

©"2011"–"2014"PERCONA"

Adding a New Attribute
•  Design the ALTER TABLE statement, but don’t

execute it yet.
mysql> ALTER TABLE cast_info  
ADD COLUMN source INT NOT NULL;!

•  Equivalent pt-online-schema-change command:
$ pt-online-schema-change  
 h=localhost,D=imdb,t=cast_info  
 --alter "ADD COLUMN source INT NOT NULL"!

58"

1

©"2011"–"2014"PERCONA"

Execute
$ pt-online-schema-change h=localhost,D=imdb,t=cast_info  

--alter "ADD COLUMN source INT NOT NULL" --execute!
!
Altering `imdb`.`cast_info`...!
Creating new table...!
Created new table imdb._cast_info_new OK.!
Altering new table...!
Altered `imdb`.`_cast_info_new` OK.!
Creating triggers...!
Created triggers OK.!
Copying approximately 22545051 rows...!
Copying `imdb`.`cast_info`: 10% 04:05 remain!
Copying `imdb`.`cast_info`: 19% 04:07 remain!
Copying `imdb`.`cast_info`: 28% 03:44 remain!
Copying `imdb`.`cast_info`: 37% 03:16 remain!
Copying `imdb`.`cast_info`: 47% 02:47 remain!
Copying `imdb`.`cast_info`: 56% 02:18 remain!
Copying `imdb`.`cast_info`: 64% 01:53 remain!
Copying `imdb`.`cast_info`: 73% 01:28 remain!
Copying `imdb`.`cast_info`: 82% 00:55 remain!
Copying `imdb`.`cast_info`: 91% 00:26 remain!
Copied rows OK.!
Swapping tables...!
Swapped original and new tables OK.!
Dropping old table...!
Dropped old table `imdb`.`_cast_info_old` OK.!
Dropping triggers...!
Dropped triggers OK.!
Successfully altered `imdb`.`cast_info`.!
!
!

59"

1

©"2011"–"2014"PERCONA"

Self-Adjusting
•  Copies rows in �chunks� which the tool sizes

dynamically.
•  The tool throttles back if it increases load too much

or if it causes any replication slaves to lag.
•  The tool tries to set its lock timeouts to let

applications be more likely to succeed.

60"

1

©"2011"–"2014"PERCONA"

Why Shouldn’t I Use This?
•  Is your table small enough that ALTER is already

quick enough?
•  Is your change already very quick, for example
DROP KEY in InnoDB?

•  Will pt-online-schema-change take too long or
increase the load too much?

61"

1

©"2011"–"2014"PERCONA"

Pros and Cons
•  Good solution:

–  ALTER TABLE to add conventional columns without
the pain of locking.

62"

1

©"2011"–"2014"PERCONA"

Pros and Cons
•  Bad solution:

–  Can take up to 4× more time than ALTER TABLE.
–  Table must have a PRIMARY key.
–  Table must not have triggers.
–  No need if your table is small and ALTER TABLE

already runs quickly enough.
–  No need for some ALTER TABLE operations that don’t

restructure the table (e.g. dropping indexes, adding
comments).

63"

1

©"2011"–"2014"PERCONA"

NON-RELATIONAL
ALTERNATIVES

Extensible Schema Design

1

©"2011"–"2014"PERCONA"

Non-Relational Alternatives
•  The basic rules of relational tables don’t apply.

–  No table heading.
–  No data types.
–  No constraints.
–  Each “row” can have its own column names.
–  Cells may contain structured data: lists, collections, sub-

cells, etc.

65"

1

©"2011"–"2014"PERCONA"

Pros and Cons
•  Good solution:

–  You gain freedom from schema constraints.
•  Bad solution:

–  You lose the benefits of schema constraints.
–  Your application can no longer assume all entries have

the same structure.
–  You have to write a lot more code to inspect each entry.
–  Altering the structure is just as complex if you have to

alter historical data retroactively.

1

©"2011"–"2014"PERCONA"

Summary
Solu*on% Lock/free% Flexible% Select% Filter% Indexed% Data%Types% Constraints%

Extra%
Columns%

no*" no" yes" yes" yes*" no" no"

EAV% yes" yes" yes*" yes" yes*" no*" no"

CTI% no*" no" yes" yes" yes" yes" yes"

LOB% yes" yes" no" no" no" no" no"

Inverted%
Index%

yes" yes" yes" yes" yes" yes" yes"

OSC% yes" no" yes" yes" yes" yes" yes"

NoSQL% yes" yes" yes" yes" yes" no*" no"

*"condiSons"or"excepSons"apply."

67"

1

©"2011"–"2014"PERCONA"

SQL Modes

Percona Training
http://www.percona.com/training

1

©"2011"–"2014"PERCONA"

Table of Contents

2!

1. What is the Server SQL mode? 4. Other SQL Modes

2. TRADITIONAL 5. Issues and Performance

3. ANSI 6. InnoDB Strict Mode

1

©"2011"–"2014"PERCONA"

WHAT IS THE SERVER SQL
MODE?

SQL Mode

3"

1

©"2011"–"2014"PERCONA"

Default MySQL behaviour
•  For historical reasons, MySQL’s default

configuration is too lax about data constraints:

mysql> CREATE TABLE `test` (
 `id` int(11) NOT NULL,
 `type` enum('movie','album','videogame') NOT NULL,
 `date` datetime NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB;

mysql> INSERT INTO test (type, date) VALUES ('tv show', -1);
...

4"

What happens?

1

©"2011"–"2014"PERCONA"

Default MySQL behaviour (cont.)

5"

Query OK, 1 row affected, 3 warnings (0.00 sec)

mysql> SHOW WARNINGS;
+---------+------+---+
| Level | Code | Message |
+---------+------+---+
Warning	1364	Field 'id' doesn't have a default value
Warning	1265	Data truncated for column 'type' at row 1
Warning	1264	Out of range value for column 'date' at row 1
+---------+------+---+
3 rows in set (0.00 sec)

mysql> SELECT * FROM test;
+----+------+---------------------+
| id | type | date |
+----+------+---------------------+
| 0 | | 0000-00-00 00:00:00 |
+----+------+---------------------+
1 row in set (0.00 sec)

1

©"2011"–"2014"PERCONA"

Why Does It Get Inserted?
•  No value/NULL for primary key gets converted into

integer 0 (without an auto_increment)
•  Item not part of the enum gets converted into the

0th element of the enum struct: '' (invalid value)
•  Invalid date gets converted into the ‘zero date’:

0000-00-00 00:00:00
•  In a non-strict mode, those conversions only produce

warnings, not errors

6"

1

©"2011"–"2014"PERCONA"

How to Fix It?
•  Go “traditional”:

mysql> SET sql_mode = 'TRADITIONAL';

mysql> INSERT INTO test (type, date) VALUES ('tv show', -1);
ERROR 1364 (HY000): Field 'id' doesn't have a default value

mysql> INSERT INTO test VALUES (1, 'tv show', -1);
ERROR 1265 (01000): Data truncated for column 'type' at row 1

mysql> INSERT INTO test VALUES (1, 'movie', -1);
ERROR 1292 (22007): Incorrect datetime value: '-1' for column
'date' at row 1

7"

1

©"2011"–"2014"PERCONA"

SQL Modes
•  sql_mode is a global and session variable that

controls the behavior of MySQL (constraints and
syntax)

•  It holds comma-separated flags that can enabled/
certain features

•  It was created for compatibility with older versions
of MySQL and other DBMS

8"

1

©"2011"–"2014"PERCONA"

Default sql_mode
•  In versions 5.5 and lower the default value for

sql_mode was '' (empty – non-strict by default)
•  From 5.6.6, the hardcoded default is:
NO_ENGINE_SUBSTITUTION

–  The suggested default in Oracle’s provided my.cnf is
NO_ENGINE_SUBSTITUTION,STRICT_TRANS_TABLES

•  In both cases, you probably want to change it to a
stricter mode

9"

1

©"2011"–"2014"PERCONA"

Combination Modes
•  For convenience, some sql_mode values are

equivalent to a combination of several others
•  For example, SET sql_mode = 'ORACLE' is

equivalent to:
SET sql_mode = 'PIPES_AS_CONCAT,
ANSI_QUOTES, IGNORE_SPACE,
NO_KEY_OPTIONS, NO_TABLE_OPTIONS,
NO_FIELD_OPTIONS, NO_AUTO_CREATE_USER'

10"

1

©"2011"–"2014"PERCONA"

TRADITIONAL
SQL Mode

11"

1

©"2011"–"2014"PERCONA"

Common Modes: Traditional
•  'TRADITIONAL' sets the common behavior of most

RDBMS regarding data constraints
–  It produces an error instead of a warning in most cases

•  You usually want to use this for data security
•  It is a combination mode equivalent to:

STRICT_TRANS_TABLES, STRICT_ALL_TABLES,
NO_ZERO_IN_DATE, NO_ZERO_DATE,
ERROR_FOR_DIVISION_BY_ZERO, NO_AUTO_CREATE_USER,
NO_ENGINE_SUBSTITUTION

12"

1

©"2011"–"2014"PERCONA"

Zero Dates
•  'NO_ZERO_DATE' disallows the '0000-00-00'
value

•  'NO_ZERO_IN_DATE' disallow zero months or days:
mysql> INSERT INTO strict values ('2014-01-00
00:00:00');

16"

sql_mode = '' inserts the values as is, with a warning
sql_mode = 'NO_ZERO_IN_DATE' inserts the value
'0000-00-00 00:00:00'
sql_mode = 'NO_ZERO_IN_DATE,NO_ZERO_DATE'
returns an error

1

©"2011"–"2014"PERCONA"

Division by Zero
•  sql_mode = 'ERROR_FOR_DIVISION_BY_ZERO'
•  Returns an error instead of the value NULL on

division by (or mod) zero

17"

1

©"2011"–"2014"PERCONA"

Auto-User Creation
•  By default, GRANT statement creates automatically

a user if it did not exist
–  This can be a security issue, specially if no password is

provided

mysql> CREATE USER 'user'@'192.168.0.100' IDENTIFIED BY 'pass';
Query OK, 0 rows affected (0.00 sec)
mysql> GRANT ALL PRIVILEGES ON *.* TO 'user'@'192.168.0.110‘;
Query OK, 0 rows affected (0.00 sec)

18"

A"new"user"has"been"created"with"different"
credenDals"and"no"password"by"mistake!"

1

©"2011"–"2014"PERCONA"

Auto-User Creation (cont.)
•  SQL mode NO_AUTO_CREATE_USER mitigates that

problem by disallowing:
–  Granting privileges to unknown user accounts, or
–  Granting privileges without setting a password (or

equivalent credentials)

mysql> SET sql_mode = 'NO_AUTO_CREATE_USER';

Query OK, 0 rows affected (0.00 sec)

mysql> GRANT ALL PRIVILEGES ON *.* TO 'user'@'192.168.0.111';
ERROR 1133 (42000): Can't find any matching row in the user table

19"

1

©"2011"–"2014"PERCONA"

ANSI
SQL Mode

21"

1

©"2011"–"2014"PERCONA"

Common Modes: ANSI
•  'ANSI' mode changes MySQL syntax to be more

similar to the SQL standard
•  It is a compound mode, equivalent* to:
SET sql_mode = 'REAL_AS_FLOAT,
PIPES_AS_CONCAT, ANSI_QUOTES,
IGNORE_SPACE';

22"

*It also changes a particular behavior with subselects, see
http://dev.mysql.com/doc/refman/5.6/en/server-sql-mode.html#sqlmode_ansi

1

©"2011"–"2014"PERCONA"

Common Modes: ANSI (cont.)
•  REAL_AS_FLOAT

–  real datatype is single precision instead of double
precision

•  PIPES_AS_CONCAT
–  The || symbol is an alias for concat() instead of the

logical OR

23"

1

©"2011"–"2014"PERCONA"

Common Modes: ANSI (cont.)
•  ANSI_QUOTES

–  The double quote (") symbol is an identifier delimiter
instead of a string delimiter

•  IGNORE_SPACE
–  Allows a space between the name of a built-in function

and its parameter definition: the ‘(’ symbol
–  As a consequence, all built-in function names become

reserved words

24"

1

©"2011"–"2014"PERCONA"

ansi Server Option
•  Starting MySQL with the --ansi command line

parameter (or setting the ansi configuration option
under the [mysqld] section) changes both the SQL
Mode and the default isolation level

•  It is equivalent to:
--transaction-isolation=SERIALIZABLE
--sql-mode=ANSI

25"

1

©"2011"–"2014"PERCONA"

ISSUES AND PERFORMANCE
SQL Mode

30"

1

©"2011"–"2014"PERCONA"

SQL Modes Problems
•  Changing the server SQL mode once it is running,

or changing it for some session may be problematic
in some cases

•  Partitioning
–  If the SQL Mode changes the key function after the

insertion of values, some of them may not be retrieved
•  Replication

–  If master and slave have different default SQL Modes,
slave can become inconsistent or replication may break

31"

1

©"2011"–"2014"PERCONA"

Performance
•  Even if application performs all required validations

and data checks, you may still want to set MySQL
Strict Mode

•  The performance gain is not that big, compared to
the overhead of other features, and it can be
disabled in appropriate cases (bulk loading)

32"

1

©"2011"–"2014"PERCONA"

SQL Modes and Connectors
•  Some MySQL connectors do not provide a(n easy)

way to monitor Warnings
–  Make sure there is a way to debug them

•  Connector/J 5.0+ sets STRICT_TRANS_TABLES

33"

1

©"2011"–"2014"PERCONA"

Alternative Syntax for Backwards
Compatibility

•  MySQL uses “versioned” comments to handle new
features in SQL language:
mysql> CREATE TABLE with_partitions (id int PRIMARY KEY)
 PARTITION BY HASH(id) PARTITIONS 4;
Query OK, 0 rows affected (0.95 sec)
mysql> SHOW CREATE TABLE with_partitions\G
************************ 1. row ************************
 Table: with_partitions
Create Table: CREATE TABLE `with_partitions` (
 `id` int(11) NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1
/*!50100 PARTITION BY HASH (id)
PARTITIONS 4 */
1 row in set (0.00 sec)

35"

MySQL >= 5.1.0 will
execute the comment;

MySQL < 5.1.0 will not.

1

©"2011"–"2014"PERCONA"

INNODB STRICT MODE
SQL Mode

36"

1

©"2011"–"2014"PERCONA"

InnoDB Strict Mode
•  It is the equivalent of the SQL strict mode for

InnoDB operations
•  If it OFF (default), a CREATE TABLE or an ALTER

TABLE will ignore incorrect key_block or
row_format options. The action will be performed
with a warning.

•  If it is ON, the statements will throw an error
immediately.

37"

1

©"2011"–"2014"PERCONA"

InnoDB Strict Mode (cont.)
mysql> SET GLOBAL innodb_file_per_table = 0;
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE compact (id int PRIMARY KEY)
 ENGINE=InnoDB row_format=dynamic;

Query OK, 0 rows affected, 2 warnings (0.18 sec)

mysql> show warnings;
+---------+------+--+
| Level | Code | Message |

+---------+------+--+
| Warning | 1478 | InnoDB: ROW_FORMAT=DYNAMIC requires innodb_file_per_table. |
| Warning | 1478 | InnoDB: assuming ROW_FORMAT=COMPACT. |
+---------+------+--+

2 rows in set (0.00 sec)

38"

1

©"2011"–"2014"PERCONA"

InnoDB Strict Mode (cont.)
mysql> set innodb_strict_mode = ON;
Query OK, 0 rows affected (0.00 sec)

mysql> ALTER TABLE compact (id int PRIMARY KEY) ENGINE=InnoDB
row_format=dynamic;
ERROR 1031 (HY000): Table storage engine for 'compact' doesn't have this
option
mysql> set global innodb_file_per_table = 1;
Query OK, 0 rows affected (0.00 sec)
mysql> set global innodb_file_format ='Barracuda';
Query OK, 0 rows affected (0.00 sec)
mysql> ALTER TABLE compact ENGINE=InnoDB;
Query OK, 0 rows affected (0.46 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> ALTER TABLE compact row_format=dynamic;
Query OK, 0 rows affected (0.38 sec)
Records: 0 Duplicates: 0 Warnings: 0

39"

1

©"2011"–"2014"PERCONA"

MySQL Partitioning

Percona Training
http://www.percona.com/training

1!

1

©"2011"–"2014"PERCONA"

Table of Contents

1. Overview 5. Restrictions and Limitations

2. Partitioning Types 6. Tools and Tips

3. Partition Management 7. Spider for MySQL

4. Partition Pruning

2!

1

©"2011"–"2014"PERCONA"

OVERVIEW
MySQL Partitioning

3"

1

©"2011"–"2014"PERCONA"

MySQL Partitioning
•  Implementation of user-defined partitioning
•  This is horizontal partitioning (different rows of a

table may be assigned to different physical
partitions)

•  Since 5.1 (not compatible with partitions <5.1.6)

4"

1

©"2011"–"2014"PERCONA"

Overview
mysql> SHOW VARIABLES LIKE '%partition%';  
+-------------------+-------+  
| Variable_name | Value |  
+-------------------+-------+  
| have_partitioning | YES |  
+-------------------+-------+  
1 row in set (0.00 sec)  
 
mysql> SHOW PLUGINS;  
+------------+----------+----------------+---------+---------+  
| Name | Status | Type | Library | License |  
+------------+----------+----------------+---------+---------+  
binlog	ACTIVE	STORAGE ENGINE	NULL	GPL
partition	ACTIVE	STORAGE ENGINE	NULL	GPL
ARCHIVE	ACTIVE	STORAGE ENGINE	NULL	GPL
BLACKHOLE	ACTIVE	STORAGE ENGINE	NULL	GPL
CSV	ACTIVE	STORAGE ENGINE	NULL	GPL
FEDERATED	DISABLED	STORAGE ENGINE	NULL	GPL
MEMORY	ACTIVE	STORAGE ENGINE	NULL	GPL
InnoDB	ACTIVE	STORAGE ENGINE	NULL	GPL
MRG_MYISAM	ACTIVE	STORAGE ENGINE	NULL	GPL
MyISAM	ACTIVE	STORAGE ENGINE	NULL	GPL
+------------+----------+----------------+---------+---------+  
10 rows in set (0.00 sec)"

5"

have_partitioning variable has
been removed in MySQL 5.6.1, use

SHOW PLUGINS instead

1

©"2011"–"2014"PERCONA"

What Is Partitioning
•  Logical splitting of tables

–  no need to create separate tables
–  no need to move chunks of data across files

•  Transparent to user
–  this is not a MERGE table

•  The user-selected rule by which the division of data
is accomplished is known as partitioning function

6"

1

©"2011"–"2014"PERCONA"

What Partitions Can Do?
•  Logical split
•  Data can be split physically
•  Granular partitions (subpartitioning)
•  Different methods can be used (range, list, hash,

key)

7"

1

©"2011"–"2014"PERCONA"

Why Partitioning?
•  For large tables!

–  “Divide & Conquer”
•  Easier Maintenance

–  Store historical data efficiently
–  Delete large chunks of data faster

•  Performance improvement for queries
–  Single inserts faster
–  Single selects faster
–  Range selects faster

•  Control data placement on devices
8"

1

©"2011"–"2014"PERCONA"

What’s the best reasons to use
MySQL Partitioning ?

•  You have large tables
–  …or fast-growing ones

•  You know you will always query using the
partitioning column(s)

•  You want to purge quickly historical tables
•  You have indexes larger than the available memory
•  You have some specific workloads that causes some

bottlenecks

9"

1

©"2011"–"2014"PERCONA"

PARTITIONING TYPES
MySQL Partitioning

10"

1

©"2011"–"2014"PERCONA"

Partitioning Types
•  In MySQL 5.6 the types of partitioning available

are:
–  RANGE
–  LIST
–  COLUMNS (*)
–  HASH
–  KEY

11"

(*) COLUMNS are variants on RANGE and LIST introduced in MySQL 5.5.0

1

©"2011"–"2014"PERCONA"

RANGE Partitioning
•  This type of partitioning assigns rows to partitions

based on column values falling within a given
range.
–  MySQL 5.5 adds an extension to this type: RANGE
COLUMNS"

•  Ranges must be contiguous
•  Ranges must not be overlapping
•  Ranges are defined using VALUES LESS THAN

operator

12"

1

©"2011"–"2014"PERCONA"

Example

13"

CREATE TABLE employees ("
 id INT NOT NULL,"
 fname VARCHAR(30),"
 lname VARCHAR(30),"
 hired DATE NOT NULL DEFAULT '1970-01-01',"
 separated DATE NOT NULL DEFAULT '9999-12-31',"
 job_code INT NOT NULL,"
 store_id INT NOT NULL"
);"

Let’s"use"store_id"for"
parCConing"

1

©"2011"–"2014"PERCONA"

Example (cont.)

14"

CREATE TABLE employees ("
 id INT NOT NULL,"
 fname VARCHAR(30),"
 lname VARCHAR(30),"
 hired DATE NOT NULL DEFAULT '1970-01-01',"
 separated DATE NOT NULL DEFAULT '9999-12-31',"
 job_code INT NOT NULL,"
 store_id INT NOT NULL"
)"
PARTITION BY RANGE (store_id) ("
 PARTITION p0 VALUES LESS THAN (6),"
 PARTITION p1 VALUES LESS THAN (11),"
 PARTITION p2 VALUES LESS THAN (16),"
 PARTITION p3 VALUES LESS THAN (21)"
);"

Each partition is defined in
order, from lowest to highest.
This is a requirement of the

PARTITION BY RANGE
syntax.

1

©"2011"–"2014"PERCONA"

But What Happens If We Add a 21st
store?

15"

1

©"2011"–"2014"PERCONA"

Example (cont.)

16"

CREATE TABLE employees ("
 id INT NOT NULL,"
 fname VARCHAR(30),"
 lname VARCHAR(30),"
 hired DATE NOT NULL DEFAULT '1970-01-01',"
 separated DATE NOT NULL DEFAULT '9999-12-31',"
 job_code INT NOT NULL,"
 store_id INT NOT NULL"
)"
PARTITION BY RANGE (store_id) ("
 PARTITION p0 VALUES LESS THAN (6),"
 PARTITION p1 VALUES LESS THAN (11),"
 PARTITION p2 VALUES LESS THAN (16),"
 PARTITION p3 VALUES LESS THAN (21)"
);"

under this scheme... an ERROR !

1

©"2011"–"2014"PERCONA"

Example (cont.)

17"

CREATE TABLE employees ("
 id INT NOT NULL,"
 fname VARCHAR(30),"
 lname VARCHAR(30),"
 hired DATE NOT NULL DEFAULT '1970-01-01',"
 separated DATE NOT NULL DEFAULT '9999-12-31',"
 job_code INT NOT NULL,"
 store_id INT NOT NULL"
)"
PARTITION BY RANGE (store_id) ("
 PARTITION p0 VALUES LESS THAN (6),"
 PARTITION p1 VALUES LESS THAN (11),"
 PARTITION p2 VALUES LESS THAN (16),"
 PARTITION p3 VALUES LESS THAN MAXVALUE"
);"

Query"OK."

1

©"2011"–"2014"PERCONA"

Example (cont.)

18"

•  It is also possible to use an expression in VALUE
LESS THAN clauses:

  
 CREATE TABLE employees ("
 id INT NOT NULL,"
 fname VARCHAR(30),"
 lname VARCHAR(30),"
 hired DATE NOT NULL DEFAULT '1970-01-01',"
 separated DATE NOT NULL DEFAULT '9999-12-31',"
 job_code INT,"
 store_id INT"
)"
 PARTITION BY RANGE (YEAR(separated)) ("
 PARTITION p0 VALUES LESS THAN (1991),"
 PARTITION p1 VALUES LESS THAN (1996),"
 PARTITION p2 VALUES LESS THAN (2001),"
 PARTITION p3 VALUES LESS THAN MAXVALUE"
);"

1

©"2011"–"2014"PERCONA"

Day and Time
•  MySQL partitioning is optimized for use with

–  TO_DAYS()"
–  YEAR()"
–  TO_SECONDS()"

•  However you can use other date and time function that
return an integer or NULL
–  WEEKDAY()"
–  DAYOFYEAR()"
–  MONTH()"

•  RANGE COLUMNS (explained later) allows the usage of
range partitioning on a DATE or DATETIME column "

19"

1

©"2011"–"2014"PERCONA"

RANGE and TIMESTAMP column
•  In MySQL 5.5.1+ it is also possible to use a
TIMESTAMP column to partition by RANGE or LIST
–  UNIX_TIMESTAMP() function must be used.
–  Any other expression involving TIMESTAMP values are

not permitted

20"

1

©"2011"–"2014"PERCONA"

Example

21"

CREATE TABLE quarterly_report_status ("
 report_id INT NOT NULL,"
 report_status VARCHAR(20) NOT NULL,"
 report_updated TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE
CURRENT_TIMESTAMP"
)"
PARTITION BY RANGE (UNIX_TIMESTAMP(report_updated)) ("
 PARTITION p0 VALUES LESS THAN (UNIX_TIMESTAMP('2008-01-01 00:00:00')),"
 PARTITION p1 VALUES LESS THAN (UNIX_TIMESTAMP('2008-04-01 00:00:00')),"
 PARTITION p2 VALUES LESS THAN (UNIX_TIMESTAMP('2008-07-01 00:00:00')),"
 PARTITION p3 VALUES LESS THAN (UNIX_TIMESTAMP('2008-10-01 00:00:00')),"
 PARTITION p4 VALUES LESS THAN (UNIX_TIMESTAMP('2009-01-01 00:00:00')),"
 PARTITION p5 VALUES LESS THAN (UNIX_TIMESTAMP('2009-04-01 00:00:00')),"
 PARTITION p6 VALUES LESS THAN (UNIX_TIMESTAMP('2009-07-01 00:00:00')),"
 PARTITION p7 VALUES LESS THAN (UNIX_TIMESTAMP('2009-10-01 00:00:00')),"
 PARTITION p8 VALUES LESS THAN (UNIX_TIMESTAMP('2010-01-01 00:00:00')),"
 PARTITION p9 VALUES LESS THAN (MAXVALUE)"
);"

1

©"2011"–"2014"PERCONA"

NULL Values with RANGE
Partitioning

•  For RANGE, the row is inserted into the lowest
partition (*):
 
CREATE TABLE tn ( 
 c1 INT,  
 c2 VARCHAR(20)  
)  
PARTITION BY RANGE(c1) ( 
 PARTITION p0 VALUES LESS THAN (-5),  
 PARTITION p1 VALUES LESS THAN (0),  
 PARTITION p2 VALUES LESS THAN (10),  
 PARTITION p3 VALUES LESS THAN MAXVALUE  
);"

22"

(*) In versions < 5.1.8, RANGE implicitly treated NULL values as 0 for partitioning selection.

1

©"2011"–"2014"PERCONA"

NULL Values with RANGE
Partitioning (cont.)

 
INSERT INTO tn VALUES (NULL, 'a null');  
Query OK, 1 row affected (0.00 sec)  
 
SELECT TABLE_NAME, PARTITION_NAME, TABLE_ROWS, AVG_ROW_LENGTH, DATA_LENGTH  
FROM INFORMATION_SCHEMA.PARTITIONS  
WHERE TABLE_SCHEMA = 'test' AND TABLE_NAME = 'tn';  
+------------+----------------+------------+----------------+-------------+  
| TABLE_NAME | PARTITION_NAME | TABLE_ROWS | AVG_ROW_LENGTH | DATA_LENGTH |  
+------------+----------------+------------+----------------+-------------+  
tn	p0	1	20	20
tn	p1	0	0	0
tn	p2	0	0	0
tn	p3	0	0	0
+------------+----------------+------------+----------------+-------------+  
7 rows in set (0.01 sec)"

23"

1

©"2011"–"2014"PERCONA"

How Does It Look Like on the
Filesystem?

•  Using MyISAM
 
-rw-rw---- 1 mysql mysql 8.5K Apr 1 22:55 salaries.frm  
-rw-rw---- 1 mysql mysql 48 Apr 1 22:55 salaries.par  
-rw-rw---- 1 mysql mysql 15M Apr 1 22:56 salaries#P#p0.MYD  
-rw-rw---- 1 mysql mysql 14M Apr 1 22:56 salaries#P#p0.MYI  
-rw-rw---- 1 mysql mysql 2.9M Apr 1 22:56 salaries#P#p1.MYD  
-rw-rw---- 1 mysql mysql 2.6M Apr 1 22:56 salaries#P#p1.MYI  
-rw-rw---- 1 mysql mysql 3.2M Apr 1 22:56 salaries#P#p2.MYD  
-rw-rw---- 1 mysql mysql 2.9M Apr 1 22:56 salaries#P#p2.MYI  
-rw-rw---- 1 mysql mysql 3.4M Apr 1 22:56 salaries#P#p3.MYD  
-rw-rw---- 1 mysql mysql 3.0M Apr 1 22:56 salaries#P#p3.MYI  
-rw-rw---- 1 mysql mysql 3.6M Apr 1 22:56 salaries#P#P4.MYD  
-rw-rw---- 1 mysql mysql 3.2M Apr 1 22:56 salaries#P#P4.MYI  
-rw-rw---- 1 mysql mysql 3.8M Apr 1 22:56 salaries#P#p5.MYD  
-rw-rw---- 1 mysql mysql 3.4M Apr 1 22:56 salaries#P#p5.MYI  
-rw-rw---- 1 mysql mysql 9.3M Apr 1 22:56 salaries#P#p6.MYD  
-rw-rw---- 1 mysql mysql 8.3M Apr 1 22:56 salaries#P#p6.MYI  
-rw-rw---- 1 mysql mysql 0 Apr 1 22:55 salaries#P#p7.MYD  
-rw-rw---- 1 mysql mysql 1.0K Apr 1 22:55 salaries#P#p7.MYI"

24"

1

©"2011"–"2014"PERCONA"

How Does It Look Like on the
Filesystem?

•  Using InnoDB with table space file per table
(innodb_file_per_table=1)
 
-rw-rw---- 1 mysql mysql 8.5K Apr 1 22:51 salaries.frm  
-rw-rw---- 1 mysql mysql 48 Apr 1 22:51 salaries.par  
-rw-rw---- 1 mysql mysql 44M Apr 1 22:52 salaries#P#p0.ibd  
-rw-rw---- 1 mysql mysql 15M Apr 1 22:52 salaries#P#p1.ibd  
-rw-rw---- 1 mysql mysql 15M Apr 1 22:52 salaries#P#p2.ibd  
-rw-rw---- 1 mysql mysql 16M Apr 1 22:52 salaries#P#p3.ibd  
-rw-rw---- 1 mysql mysql 16M Apr 1 22:52 salaries#P#P4.ibd  
-rw-rw---- 1 mysql mysql 17M Apr 1 22:52 salaries#P#p5.ibd  
-rw-rw---- 1 mysql mysql 30M Apr 1 22:53 salaries#P#p6.ibd  
-rw-rw---- 1 mysql mysql 96K Apr 1 22:51 salaries#P#p7.ibd"

25"

1

©"2011"–"2014"PERCONA"

RANGE Partitioning Exercise
•  Create four partitions (id) for the table title with

approximately the same number of records
•  Verify the partitioning by counting the number of

records on each one by using the
INFORMATION_SCHEMA tables

26"

1

©"2011"–"2014"PERCONA"

LIST Partitioning
•  Each partition must be explicitly defined
•  Each partition is defined and selected based on the

membership of a column value in a set of value lists.
•  Defined using PARTITION BY LIST(expr) where

expr is a column value or an expression based on a
column value returning an integer

•  Partitions are defined using VALUES IN
(value_list) where value_list is a comma-
separated list of integers

27"

1

©"2011"–"2014"PERCONA"

Example
•  Suppose that there are 20 video stores distributed

among 4 franchises as shown in the following table.

28"

Region' Store'IDs'

North" 3,"5,"6,"9,"17"

East" 1,"2,"10,"11,"19,"20"

West" 4,"12,"13,"14,"18"

Central" 7,"8,"15,"16"

1

©"2011"–"2014"PERCONA"

Example (cont.)

29"

CREATE TABLE employees ("
 id INT NOT NULL,"
 fname VARCHAR(30),"
 lname VARCHAR(30),"
 hired DATE NOT NULL DEFAULT '1970-01-01',"
 separated DATE NOT NULL DEFAULT '9999-12-31',"
 job_code INT,"
 store_id INT"
)"
PARTITION BY LIST(store_id) ("
 PARTITION pNorth VALUES IN (3,5,6,9,17),"
 PARTITION pEast VALUES IN (1,2,10,11,19,20),"
 PARTITION pWest VALUES IN (4,12,13,14,18),"
 PARTITION pCentral VALUES IN (7,8,15,16)"
);"

LIST"parCCons"do"not"
need"to"be"declared"in"
any"parCcular"order"

1

©"2011"–"2014"PERCONA"

LIST Partitioning (cont.)
•  Unlike the case with RANGE partitioning, there is no

“catch-all” such as MAXVALUE; all expected values
for the partitioning expression should be covered in

PARTITION ... VALUES IN (...) clauses.

30"

1

©"2011"–"2014"PERCONA"

NULL Values with LIST Partitioning
•  Unlike RANGE, there is no implicit usage of NULL

values with LIST partitioning
•  NULL is only allowed as a partitioning expression

value if it one of the explicit members of a list:
 
CREATE TABLE tn ( 
 c1 INT,  
 c2 VARCHAR(20)  
)  
PARTITION BY LIST(c1) ( 
 PARTITION p0 VALUES IN (0, 3, 6),  
 PARTITION p1 VALUES IN (1, 4, 7),  
 PARTITION p2 VALUES IN (2, 5, 8)  
);"

31"

1

©"2011"–"2014"PERCONA"

NULL Values with LIST Partitioning
(cont.)

INSERT INTO tn VALUES (NULL, 'a null');  
 
CREATE TABLE tn2 ( 
 c1 INT,  
 c2 VARCHAR(20)  
)  
PARTITION BY LIST(c1) ( 
 PARTITION p0 VALUES IN (0, 3, 6, NULL),  
 PARTITION p1 VALUES IN (1, 4, 7),  
 PARTITION p2 VALUES IN (2, 5, 8)  
);  
 
INSERT INTO tn2 VALUES (NULL, 'a null');  
 
"

32"

Query"OK."

ERROR 1504 (HY000)"

1

©"2011"–"2014"PERCONA"

COLUMNS Partitioning
•  Introduced in MySQL 5.5.0 COLUMNS partitioning

enables the use of multiple columns in partitioning keys.
•  Available for RANGE and LIST"
•  Data types supported:

–  All integer types: TINYINT, SMALLINT, MEDIUMINT, INT
and BIGINT

–  DATE and DATETIME
–  String types: CHAR, VARCHAR, BINARY and VARBINARY

•  No other numeric data types supported like DECIMAL
or FLOAT

•  TEXT and BLOB are not supported

33"

1

©"2011"–"2014"PERCONA"

RANGE COLUMNS
•  RANGE COLUMNS differs from RANGE in the

following ways:
–  It does not accept expressions, only names of columns
–  It accepts a list of one or more columns
–  It is not restricted to integer columns

 
CREATE TABLE rcx ( 
 a INT,  
 b INT,  
 c CHAR(3),  
 d INT  
)  
PARTITION BY RANGE COLUMNS(a,d,c) ( 
 PARTITION p0 VALUES LESS THAN (5,10,'ggg'),  
 PARTITION p1 VALUES LESS THAN (10,20,'mmmm'),  
 PARTITION p2 VALUES LESS THAN (15,30,'sss'),  
 PARTITION p3 VALUES LESS THAN (MAXVALUE,MAXVALUE,MAXVALUE)  
);"

34"

1

©"2011"–"2014"PERCONA"

RANGE COLUMNS (cont.)

35"

CREATE TABLE members ( 
 firstname VARCHAR(25) NOT NULL,  
 lastname VARCHAR(25) NOT NULL,  
 username VARCHAR(16) NOT NULL,  
 email VARCHAR(35),  
 joined DATE NOT NULL  
)  
PARTITION BY RANGE COLUMNS(joined) ( 
 PARTITION p0 VALUES LESS THAN ('1960-01-01'),  
 PARTITION p1 VALUES LESS THAN ('1970-01-01'),  
 PARTITION p2 VALUES LESS THAN ('1980-01-01'),  
 PARTITION p3 VALUES LESS THAN ('1990-01-01'),  
 PARTITION p4 VALUES LESS THAN MAXVALUE  
);"

1

©"2011"–"2014"PERCONA"

LIST COLUMNS
•  Same features and restrictions as RANGE

COLUMNS
 
CREATE TABLE customers_1 ( 
 first_name VARCHAR(25),  
 last_name VARCHAR(25),  
 street_1 VARCHAR(30),  
 street_2 VARCHAR(30),  
 city VARCHAR(15),  
 renewal DATE  
)  
PARTITION BY LIST COLUMNS(city) ( 
 PARTITION pRegion_1 VALUES IN('Oskarshamn', 'Högsby', Mönsterås'),  
 PARTITION pRegion_2 VALUES IN('Vimmerby', 'Hultsfred', Västervik'),  
 PARTITION pRegion_3 VALUES IN('Nässjö', 'Eksjö', 'Vetlanda'),  
 PARTITION pRegion_4 VALUES IN('Uppvidinge', 'Alvesta', 'Växjo')  
);"

36"

1

©"2011"–"2014"PERCONA"

HASH Partitioning
•  Partitions are selected based on the value returned

by a user-defined expression that operates on
column values.

•  The function is a valid expression that yields a
nonnegative integer value.

•  Used to ensure an even distribution of data
•  Defined by PARTITION BY HASH (expr) and

followed by with PARTITIONS num"
•  An extension to this type, LINEAR HASH, is also

available.

37"

1

©"2011"–"2014"PERCONA"

Example

38"

CREATE TABLE employees (

 id INT NOT NULL,

 fname VARCHAR(30),

 lname VARCHAR(30),

 hired DATE NOT NULL DEFAULT '1970-01-01',

 separated DATE NOT NULL DEFAULT '9999-12-31',

 job_code INT,

 store_id INT

)

PARTITION BY HASH(store_id)

PARTITIONS 4;

The expression must return a non-
constant, non-random integer value
and must not contain any prohibited

constructs (see restrictions and
limitations topic).

1

©"2011"–"2014"PERCONA"

Example

39"

CREATE TABLE employees (

 id INT NOT NULL,

 fname VARCHAR(30),

 lname VARCHAR(30),

 hired DATE NOT NULL DEFAULT '1970-01-01',

 separated DATE NOT NULL DEFAULT '9999-12-31',

 job_code INT,

 store_id INT

)

PARTITION BY HASH(store_id)

PARTITIONS 4;

If omitted, the default
number of partitions is 1.

1

©"2011"–"2014"PERCONA"

HASH modulus
•  To determine which partition needs to be used, MySQL

performs a modulus of the user function:
N = MOD(expr, num) (N is the partition number)

  
 CREATE TABLE t1 (col1 INT, col2 CHAR(5), col3 DATE)  
 PARTITION BY HASH(YEAR(col3))  
 PARTITIONS 4;  
"

•  If you insert a record into t1 whose col3 value is
'2012-04-02', in which partition will it be stored ?
 
mysql> select MOD(YEAR('2012-04-02'), 4);  
+---------------------------+  
| MOD(YEAR('2012-04-02'),4) |  
+---------------------------+  
| 0 |  
+---------------------------+"

40"

1

©"2011"–"2014"PERCONA"

Hash Partitioning Exercise
•  Revert the title table to the previous status -no

partitions
•  Create 4 partitions BY HASH based on the primary

key
•  Which partition has row #3? And #4?

46"

1

©"2011"–"2014"PERCONA"

KEY Partitioning
•  Similar to HASH except that the user-defined

expression is supplied transparently by MySQL
–  Same algorithm as PASSWORD() is used
–  MD5() in MySQL Cluster

•  Defined using PARTITION BY KEY"
•  Same as HASH but
–  KEY is used rather than HASH"
–  KEY takes only a list of column names (0 or more)
–  Columns are not restricted to integer or NULL"

47"

1

©"2011"–"2014"PERCONA"

Example

48"

CREATE TABLE k1 ( 
 id INT NOT NULL,  
 name VARCHAR(20)  
)  
PARTITION BY KEY(name)  
PARTITIONS 2;  
 
CREATE TABLE k1 ( 
 id INT NOT NULL PRIMARY KEY,  
 name VARCHAR(20)  
)  
PARTITION BY KEY()  
PARTITIONS 2;  
 
CREATE TABLE k1 ( 
 id INT NOT NULL,  
 name VARCHAR(20),  
UNIQUE KEY (id)  
)  
PARTITION BY KEY()  
PARTITIONS 2;"

No column specified, PRIMARY
KEY is used

No PRIMARY KEY, but there is a
UNIQUE KEY that is used for the

partitioning key.
If the unique key was defined as
NULL, the statement would fail

1

©"2011"–"2014"PERCONA"

NULL values with HASH and KEY
Partitioning

•  In the case of using HASH or KEY partitioning, the
expression returning a NULL value is treated as if
it returned a zero:
 
CREATE TABLE tn ( 
 c1 INT,  
 c2 VARCHAR(20)  
)  
PARTITION BY HASH(c1)  
PARTITIONS 2;"

49"

1

©"2011"–"2014"PERCONA"

NULL values with HASH and KEY
Partitioning (cont.)

50"

INSERT INTO tn VALUES (NULL, 'a null');
INSERT INTO tn VALUES (0, 'a zero');

SELECT TABLE_NAME, PARTITION_NAME, TABLE_ROWS, AVG_ROW_LENGTH, DATA_LENGTH
FROM INFORMATION_SCHEMA.PARTITIONS
WHERE TABLE_SCHEMA = 'p' AND TABLE_NAME ='tn';
+------------+----------------+------------+----------------+-------------+
| TABLE_NAME | PARTITION_NAME | TABLE_ROWS | AVG_ROW_LENGTH | DATA_LENGTH |
+------------+----------------+------------+----------------+-------------+
| tn | p0 | 2 | 20 | 20 |
| tn | p1 | 0 | 0 | 0 |
+------------+----------------+------------+----------------+-------------+
2 rows in set (0.00 sec)

1

©"2011"–"2014"PERCONA"

PARTITION MANAGEMENT
MySQL Partitioning

54"

1

©"2011"–"2014"PERCONA"

Partition Management
•  It’s possible to add, drop, redefine, merge, or split

existing partitions
•  All these actions are done via ALTER TABLE"

–  Most of these cannot be combined with other operations
on the same ALTER TABLE"

•  We make 2 distinctions in management of
partitions:
–  RANGE and LIST
–  HASH and KEY"

55"

1

©"2011"–"2014"PERCONA"

Management of LIST and RANGE
Partitions

•  Dropping a partition with all its data
ALTER TABLE table1  
DROP PARTITION p2;  
"

•  Remove all data but keep the partitioning scheme
TRUNCATE TABLE table1;"

•  Add an empty partition
ALTER TABLE table1 ADD PARTITION
(PARTITION p3 VALUES LESS THAN (n));"

56"

With LIST you can no longer
insert into the table any rows that

should have been added in the
deleted partition

1

©"2011"–"2014"PERCONA"

Management of LIST and RANGE
Partitions (cont.)

•  Reorganize table partitions without loosing data
 
ALTER TABLE table1 REORGANIZE PARTITION
partitions_list INTO (partition_definitions);  
"

–  For tables partitioned by RANGE, you can reorganize
only adjacent partitions; you cannot skip over range
partitions.

–  You cannot use REORGANIZE PARTITION to change the
table’ s partitioning type, the partitioning expression or
column. Use ALTER TABLE ... PARTITION BY ...
or DROP and recreate the table instead.

57"

1

©"2011"–"2014"PERCONA"

Management of HASH and KEY
Partitions

•  You cannot drop partitions from tables partitioned
with these types in the same way we did it with
RANGE or LIST.

•  You can merge HASH or KEY partitions using ALTER
TABLE ... COALESCE PARTITION statement.
–  It requires an argument with the number of partitions

to drop/merge
•  You can increase the number of partitions using
ALTER TABLE ... ADD PARTITION PARTITIONS
statement.

58"

1

©"2011"–"2014"PERCONA"

Maintenance of Partitions
•  There are several ALTER TABLE extensions that

allow maintenance operations on a partition
–  They also accept a list of partitions or the alias ALL"

•  ALTER TABLE ... REBUILD PARTITION"
–  For defragmenting, is equivalent to dropping all records

and reinserting them
•  ALTER TABLE ... OPTIMIZE PARTITION

–  Equivalent to CHECK PARTITION, ANALYZE
PARTITION, and REPAIR PARTITION "

59"

1

©"2011"–"2014"PERCONA"

Maintenance of Partitions (cont.)
•  ALTER TABLE ... ANALYZE PARTITION "

–  reads and stores the key distributions for partitions.
•  ALTER TABLE ... REPAIR PARTITION"

–  attempts to repair corrupted partitions.
•  ALTER TABLE ... CHECK PARTITION "

–  checks partitions for errors

60"

1

©"2011"–"2014"PERCONA"

TRUNCATE and REMOVE
Partitions

•  You can also truncate partitions using:
ALTER TABLE ... TRUNCATE PARTITION ..."
–  You call use ALTER TABLE ... TRUNCATE PARTITION
ALL to truncate all partitions in the table.

•  For removing all partition definitions from a table,
you can use:
ALTER TABLE ... REMOVE PARTITIONING;

61"

1

©"2011"–"2014"PERCONA"

EXCHANGE PARTITION
•  In MySQL 5.6 you can exchange single partition or

subpartition data with a single unpartitioned table in a
fast way with EXCHANGE PARTITION:

CREATE TABLE t1 ( 
 col1 int DEFAULT NULL,  
 col2 char(5) DEFAULT NULL  
) PARTITION BY RANGE (col1)( 
 PARTITION p0 VALUES LESS THAN (0),  
 PARTITION p1 VALUES LESS THAN (10),  
 PARTITION p2 VALUES LESS THAN MAXVALUE  
);"

62"

1

©"2011"–"2014"PERCONA"

EXCHANGE PARTITION (cont.)
CREATE TABLE t2 like t1;  
 
ALTER TABLE t2 REMOVE PARTITIONING;  
 
INSERT INTO t1 VALUES (-1, 'a'), (0, 'b'), (2, 'd'),(4,
'a'), (9, 'b'), (10, 'd'),(15, 'a');  
 
ALTER TABLE t1 EXCHANGE PARTITION p1 WITH TABLE t2;  
 
SELECT * FROM t2;  
+------+------+  
| col1 | col2 |  
+------+------+  
0	b
2	d
4	a
9	b
+------+------+"

63"

1

©"2011"–"2014"PERCONA"

Obtaining Information About
Partitions

•  You can use SHOW CREATE TABLE"
•  You can SHOW TABLE STATUS to determine

whether a table is partitioned
•  Using the statement EXPLAIN PARTITIONS
SELECT to see which partitions are being used

•  Query the INFORMATION_SCHEMA.PARTITIONS table
 
SELECT TABLE_NAME, PARTITION_NAME, TABLE_ROWS,  
 AVG_ROW_LENGTH, DATA_LENGTH  
FROM INFORMATION_SCHEMA.PARTITIONS  
WHERE TABLE_SCHEMA = 'p' AND TABLE_NAME LIKE 'table1';"

64"

1

©"2011"–"2014"PERCONA"

PARTITION PRUNING
MySQL Partitioning

65"

1

©"2011"–"2014"PERCONA"

Partition Pruning
•  “Do not scan partitions where there can be no matching

values”
•  The query optimizer can perform pruning whenever a
WHERE condition can be reduced to:
–  partition_column = constant"
–  partition_column IN (constant1, constant2, ...,

constantN)"

•  In 5.1 a query against a table partitioned by KEY and
having a composite partitioning key could pruned only if
all columns of that partitioning key were compared in
the WHERE clause. This is not more the case in 5.5+

66"

1

©"2011"–"2014"PERCONA"

Example
•  Retrieve a single record

from an unpartitioned
table.

67"

SELECT"*"FROM"table1"
WHERE"col_x"="1996;"

1

©"2011"–"2014"PERCONA"

Example (cont.)
•  Retrieve a single record

from a partitioned
table.

68"

SELECT"*"FROM"table1"
WHERE"col_x"="1996;"

1970]1979"

1980]1989"

1990]1999"

2000]2010"

2010]2020"

1

©"2011"–"2014"PERCONA"

Example (cont.)
•  Retrieve a range from

an unpartitioned table.

69"

SELECT"*"FROM"table1"
WHERE"col_x"BETWEEN"1997"
and"2002;"

1

©"2011"–"2014"PERCONA"

Example (cont.)
•  Retrieve a range from a

partitioned table.

70"

1970]1979"

1980]1989"

1990]1999"

2000]2010"

2010]2020"

SELECT"*"FROM"table1"
WHERE"col_x"BETWEEN"1997"
and"2002;"

1

©"2011"–"2014"PERCONA"

EXPLAIN PARTITIONS
•  In order to check the effectiveness of partition

pruning on our query plans, we can use EXPLAIN
PARTITIONS:
 
CREATE TABLE employees ( 
 `id` int(11) NOT NULL,  
 `fname` varchar(30) DEFAULT NULL,  
 `lname` varchar(30) DEFAULT NULL,  
 `hired` date NOT NULL DEFAULT '1970-01-01',  
 `separated` date NOT NULL DEFAULT '9999-12-31',  
 `job_code` int(11) DEFAULT NULL,  
 `store_id` int(11) DEFAULT NULL)  
PARTITION BY RANGE (YEAR(separated))( 
 PARTITION p0 VALUES LESS THAN (1991) ENGINE = InnoDB,  
 PARTITION p1 VALUES LESS THAN (1996) ENGINE = InnoDB,  
 PARTITION p2 VALUES LESS THAN (2001) ENGINE = InnoDB,  
 PARTITION p3 VALUES LESS THAN MAXVALUE ENGINE = InnoDB  
);"

71"

1

©"2011"–"2014"PERCONA"

EXPLAIN PARTITIONS (cont.)
mysql> EXPLAIN PARTITIONS  
 -> SELECT * FROM employees  
 -> WHERE separated >= '1997-1-1' and separated <= '2003-12-31';"
+----+-------------+-----------+------------+------+---------------+------+---------+------+------+-------------+"
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | Extra |"
+----+-------------+-----------+------------+------+---------------+------+---------+------+------+-------------+"
| 1 | SIMPLE | employees | p2,p3 | ALL | NULL | NULL | NULL | NULL | 2 | Using where |"
+----+-------------+-----------+------------+------+---------------+------+---------+------+------+-------------+"

1 row in set (0.00 sec)"

72"

1

©"2011"–"2014"PERCONA"

Partition Lock Pruning
•  In MySQL 5.6.6+, storage engines that only have

table-level locking, like MyISAM will only lock the
affected partitions

•  Only the partitions used, according to the WHERE
clauses, will be locked for SELECT queries and DML
statements

•  Also for ALTER TABLE ... TRUNCATE PARTITION
and ALTER TABLE ... EXCHANGE PARTITION"

•  Engines like InnoDB are not impacted by lock
pruning

73"

1

©"2011"–"2014"PERCONA"

Partition Selection (5.6)
•  In MySQL 5.6 it is possible to execute SELECTs and
DMLs on one or several specific partitions:
SELECT * FROM employees PARTITION (p0, p1);  
DELETE from employees PARTITION (p3) where separated >=
'2013-1-1';"

•  It will not warn(*) about impossible conditions
unless the action fails:
DELETE from employees PARTITION (p1)  
where separated >= '2013-1-1';  
INSERT INTO employees PARTITION (p1) (id, separated)  
values (1000, '2013-1-1');"

74"

Query"OK."

ERROR 1748 (HY000)"
(*) “No matching rows after partition pruning” will be show on EXPLAIN"

1

©"2011"–"2014"PERCONA"

RESTRICTIONS AND
LIMITATIONS

MySQL Partitioning

75"

1

©"2011"–"2014"PERCONA"

Partitioning Keys, Primary Keys and
Unique Keys

•  The RULE :

All columns used in the partitioning expression for a
partitioned table must be part of every unique key
that the table may have.

•  In other words:
–  Every unique key on the table must use every column in

the table’s partitioning expression.

76"

1

©"2011"–"2014"PERCONA"

Partitioning Keys, Primary Keys and
Unique Keys (cont.)

77"

mysql> create table t3 ("
 col1 INT NOT NULL, "
 col2 DATE NOT NULL, "
 col3 INT NOT NULL, "
 col4 INT NOT NULL, "
 UNIQUE KEY (col1, col2, col3), "
 UNIQUE KEY(col1) "
) PARTITION BY HASH(col3) PARTITIONS 4;"

ERROR 1503 (HY000): A UNIQUE INDEX must include all
columns in the table's partitioning function

1

©"2011"–"2014"PERCONA"

Partitioning Keys, Primary Keys and
Unique Keys (cont.)

78"

mysql> create table t3 ("
 col1 INT NOT NULL, "
 col2 DATE NOT NULL, "
 col3 INT NOT NULL, "
 col4 INT NOT NULL, "
 UNIQUE KEY (col1, col2, col3), "
 UNIQUE KEY(col1) "
) PARTITION BY HASH(col1) PARTITIONS 4;"
"

Query OK, 0 rows affected (0.05 sec)

1

©"2011"–"2014"PERCONA"

Incompatible Partitioning Keys
•  Prohibited constructs:

–  stored procedures, stored functions, UDF’s, plugins
–  declared variables or user variables
–  Subqueries, even if they return integer values

•  Arithmetic and logical operators
–  +, - and * are permitted in partitioning expressions

but the result must be an integer or NULL(*)
–  DIV operator is also supported but not /"
–  |, &, ^, <<, >> and ~ are not permitted

79"

(*) Except in the case of [LINEAR] KEY"

1

©"2011"–"2014"PERCONA"

Server SQL mode
•  The SQL mode in effect at creation time is not

preserved.
•  A change in the SQL mode could lead to corruption

or loss of data as the results of many MySQL
functions and operators may change.

•  It is strongly recommended that you never change
the server SQL mode after creating partitioned
tables !

80"

1

©"2011"–"2014"PERCONA"

Performance Considerations
•  File system operations affect partitioning and

repartitioning operations
–  large_files_support =1"
–  Tune open_files_limit"
–  myisam_max_sort_file_size may improve performance

for MyISAM tables
–  Use innodb_file_per_table for InnoDB tables.

•  Table locks
–  Partitioning operation takes a write lock on the table

•  Storage engine
–  Partitioning operations, queries and update are faster on

MyISAM
81"

1

©"2011"–"2014"PERCONA"

Performance Considerations (5.5+)
•  Performance with LOAD DATA"

–  From MySQL 5.5, it uses buffering to improve
performance.

–  130KB of memory per partition are used by the buffer
•  Per-partition key caches

–  MySQL 5.5+ support key caches for partitioned
MyISAM tables.

–  CACHE INDEX and LOAD INDEX INTO CACHE

82"

1

©"2011"–"2014"PERCONA"

Different Storage Engines for
Partitions

•  Despite having the syntax for having per-partition
definition of engines, it cannot be used, and a single
engine must be used at table level:
 
CREATE TABLE t1 ( 
 col1 int DEFAULT NULL,  
 col2 char(5) DEFAULT NULL  
) PARTITION BY RANGE (col1) ( 
 PARTITION p0 VALUES LESS THAN (0) ENGINE = MyISAM,  
 PARTITION p1 VALUES LESS THAN (10) ENGINE = InnoDB,  
 PARTITION p2 VALUES LESS THAN MAXVALUE ENGINE = ARCHIVE  
);"

83"

ERROR 1497 (HY000): The mix of handlers in the partitions is not
allowed in this version of MySQL

1

©"2011"–"2014"PERCONA"

Other Restrictions
•  A table can have a maximum of 8192 partitions (1024 for

versions prior to 5.6.7)
•  Foreign keys are not supported
•  FULLTEXT indexes are not supported
•  Spatial types (POINT, GEOMETRY, …) are not supported
•  Temporary tables cannot be partitioned
•  Log tables cannot be partitioned
•  DELAYED option not supported
•  DATA DIRECTORY and INDEX DIRECTORY are ignored in

table-level
•  Query Cache cannot be used for partitioned tables (5.5.23+,

bugged before, see #53775)

84"

© 2011 – 2013 PERCONA

“my movies” Exercise

Percona Training
http://www.percona.com/training

© 2011 – 2013 PERCONA

Your Tasks
• Setup pt-query-digest to find slow queries.
• Use instrumentation (New Relic, Intrumentation

for PHP) and your own intuition to add needed
indexes and remove common offending design
patterns.

2

© 2011 – 2013 PERCONA

Sample Application
• MyMovies

• IMDB clone application.
• Using sample data that is

freely available for
download.

3

© 2011 – 2013 PERCONA

Main Functions
• Home Page
• View a Movie
• View an Actor
• View a User
• Signup or Login

• Write comments
• Rate a movie
• Add Favourites
• Add Friends
• Search

4

Please check that you can
complete all of these tasks.

These are the main functions
that you will need to optimize.

© 2011 – 2013 PERCONA

The Focus of This Exercise
• Optimize the application as much as you can.

– You will be making database changes.
– You will be making code changes.

5

© 2011 – 2013 PERCONA

Your Goal
• When it comes to optimization time, you are

encouraged to cheat your way out.
• For example, “there are 2812743 actors in the

system,” but you can calculate it differently:
– SELECT COUNT(*) FROM actors;

– May change to:
– SELECT MAX(id) FROM actors;

6

Please seek approval before making these changes.
Your instructor may say no if functionality changes too much.

© 2011 – 2013 PERCONA

The Instructor’s Role
• Number #1 Goal:

– We want you to teach you to be methodical.
– We want you to use data to support your decisions.

7

© 2011 – 2013 PERCONA

The Instructor’s Role (cont.)
• Number #2 Goal:

– We want to be a sounding board for your strategies.
– Not sure what the risks are of a particular change? Ask.
– Want to know how much change you should expect from

reducing the number of queries? Ask.

8

© 2011 – 2013 PERCONA

You can work in teams!
• If you are not in teams, please form teams now.

• We suggest that each team should have someone
who knows at least a bit of PHP.
– But you need not be an expert.

9

© 2011 – 2013 PERCONA

The Rules
• Don’t return bogus results.
• Don’t delete data.
• Ask before degrading/changing functionality.
• Ask for help setting up new instances.
• No caching.

– Except in MySQL buffers or tables.

10

© 2011 – 2013 PERCONA

How Do We Generate Load?
• Generate it yourself to start with.
• Please ask me when you want me to stress the

application with rapid traffic.

11

© 2011 – 2013 PERCONA

Response Time Goals

12

Page Response Time Notes

Home page 200ms Must load as fast as possible.
This is the entry point for visitors, and has
the most front-end cache misses.

Search page 1000ms Users are more tolerant if search requests
take longer.

All other pages 500ms

© 2011 – 2013 PERCONA

Already Finished?
• Extra credit exercises:

– Setup replication and implement application-level basic
read/write splitting.

– Implement a high level (Varnish/Squid) and/or a low
level (Memcached) cache to the application.

– Implement a hash index, FULLTEXT index or a
soundex index on the table title.

– Implement partitioning or sharding on the table title.

13

© 2011 – 2013 PERCONA

Conclusion

Percona Training
http://www.percona.com/training

1

© 2011 – 2013 PERCONA

Feedback Survey
• You will find it as the last link at the bottom of the

Moodle page for this course.
• After completing it, you will have access to your

certificate of completion for this course.

• The survey is anonymous, but we encourage you to
leave your name and email, so we can follow up.

2

© 2011 – 2013 PERCONA

Thank you!
• The Percona Training Homepage

http://www.percona.com/training/

3

